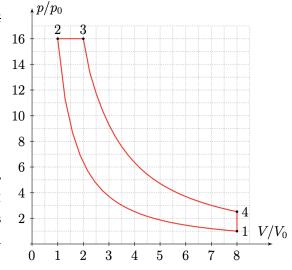

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ФИЗИКЕ МУНИЦИПАЛЬНЫЙ ЭТАП

2023-2024 учебный год


11 класс

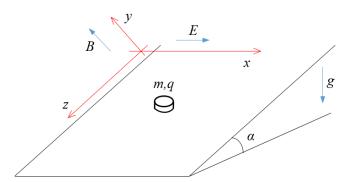
- 1. Дырявый барометр. Закрытая с одного конца трубка ртутного барометра имеет площадь внутреннего сечения S=1 см² и выступает над поверхностью ртути на L=1м. Уровень ртути в трубке установился выше уровня ртути в открытой части барометра на h=750 мм, а остальная часть трубки пуста. Температура в лаборатории $T=27^{\circ}C$. В результате случайного удара по трубке (выше уровня ртути) в ней образовалась микротрещина, через которую начал поступать воздух со скоростью $\mu=10^{16}$ молекул в секунду. С какой скоростью v начал опускаться уровень ртути в трубке сразу после удара? Плотность ртути $\rho=13600~{\rm Kr\over M^3}$, постоянная Больцмана $k=1,38\cdot 10^{-23}~{\rm Kr\over K}$, ускорение свободного падения $g=10~{\rm Kr\over K^2}$.
- 2. **Заряженный конденсатор.** В цепи, схема которой изображена на рисунке, известна ЭДС \mathscr{E} идеальной батареи, ёмкость конденсатора C, обе пластины которого имеют начальный положительный заряд q_0 ($q_0 < \mathscr{E}C$), и сопротивление резистора R. В C R начальный момент ключ K разомкнут. Затем его замыкают. Определите:
- а. силу тока I_0 в цепи сразу после замыкания ключа K;
- b. силу тока I_1 , идущего через источник в момент, когда пластины конденсатора начнут притягиваться друг к другу.

- 1-2 адиабатное сжатие рабочего тела;
- 2-3 изобарный подвод теплоты к рабочему телу;
- 3-4 адиабатное расширение рабочего тела;
- 4-1 изохорное охлаждение рабочего тела.

Под «рабочим телом» для упрощения будем понимать идеальный газ. Используя относительные величины давления и объёма (p_0 и V_0 считать известными) на графике и, приняв количество вещества рабочего тела за ν , ответьте на следующие вопросы:

- а. Какова минимальная температура T_{min} газа за весь цикл?
- b. Чему равна работа газа A за цикл? Давление в точке 4 считайте известным и равным $p_4 = 2,5p_0$. Здесь и в следующем пункте считайте число i степеней свободы газа известным.
- с. Найдите КПД η такого цикла.

Для описания зависимости давления газа от его объёма на адиабатных участках графика можно использовать уравнение Пуассона:


$$pV^{\gamma} = \text{const}$$

где $\gamma = \frac{c_p}{c_V}$ — показатель адиабаты (c_p , c_V — молярные теплоёмкости газа при постоянном давлении и при постоянном объёме соответственно).

- d. Теперь, считая i неизвестным, найдите численное значение γ .
- е. Чему равно і?

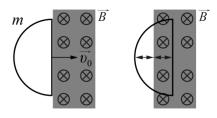
4. **По наклонной**. На протяжённой наклонной плоскости с углом наклона α удерживают небольшой диск массой m и с зарядом q (q > 0). Коэффициент трения между диском и наклонной плоскостью

μ. Напряженность Е однородного электрического поля направлена по параллельной плоскости горизонтальной оси Ох, индукция В однородного магнитного поля направлена по оси Оу, перпендикулярной наклонной плоскости (см. рисунок). Диск отпускают. В момент сразу после того как диск отпустили, определите:

- а. силу нормальной реакции опоры N;
- b. угол β между осью Oz и направлением силы трения;
- с. при каком минимальном значении коэффициента трения $\,\mu_{min}\,$ диск не начнёт двигаться;

В предположении, что $\mu < \mu_{min}$, в момент сразу после того как диск отпустили, определите:

- d. силу трения F_{Tp} ;
- е. начальное ускорение a_0 ;


В предположении, что $\mu < \mu_{min}$, в установившемся режиме при движении с постоянной скоростью определите:

- f. скорость установившегося движения v_{ycr} ;
- g. работу A_{M} , которую совершают магнитные силы за время т;
- h. количество теплоты Q, которое выделяется в системе за время т.

Ускорение свободного падения g. Ось Oz параллельна плоскости и перпендикулярна оси Ox.

5. **Много Пи.** Из проволоки массой m, длиной l и сопротивлением R изготовили контур в виде

половины окружности с диаметром. В начальный момент времени, контуру сообщили скорость v_0 , вектор которой перпендикулярен m диаметру и лежит в плоскости контура (см. рис.). В процессе движения проволочная конструкция заехала в область однородного магнитного поля с индукцией B_0 , вектор которой перпендикулярен плоскости контура, а начальная скорость v_0 перпендикулярна границе магнитного

поля. Через некоторое время контур остановился, заехав в поле на половину радиуса. Определите:

- а. начальную кинетическую энергию контура W_0 ;
- b. ускорение контура a_0 в момент пересечения диаметром границы области с магнитным полем;
- с. количество теплоты Q, выделившееся в контуре к моменту остановки;
- d. заряд q, прошедший по контуру за время движения.

Действием гравитационных сил пренебречь.