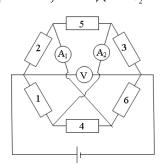
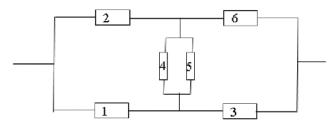
Всероссийская олимпиада школьников по физике Муниципальный этап 10-й класс


Время выполнения – 3 астрономических часа 50 минут.

1. Пассажир поезда заметил, что две встречные электрички промчались мимо него с интервалом $t_1 = 6$ мин. С каким интервалом времени t_2 проехали эти электрички мимо станции, если поезд, в котором находился пассажир, ехал со скоростью $v_1 = 100$ км/ч, а скорость каждой из электричек $v_2 = 60$ км/ч? Длиной электричек пренебречь.

Возможное решение


Найдём расстояние между электричками в двух системах отсчёта: в системе отсчёта «поезд», связанной с пассажиром, и в системе отсчёта, связанной со станцией. В системе отсчёта «поезд» электрички движутся со скоростью $v_{\text{отн}} = v_1 + v_2$. Так как они проходят мимо пассажира с интервалом времени t_1 , расстояние между электричками $s = v_{\text{отн}} t_1 = (v_1 + v_2) t_1$. В системе же отсчёта, связанной со станцией, $s = v_2 t_2$. Приравнивая два выражения для s, получаем $t_2 = (v_1 + v_2) t_1 / v_2$. Подставляя численные данные, находим $t_2 = 16$ мин.

2. Схема с идеальными амперметрами и вольтметром, который показывает 8 В, подключена к источнику постоянного напряжения. Сопротивления резисторов в омах подписаны на них. Определите показания амперметров.

Возможное решение

Известно, что сопротивление идеального вольтметра бесконечно велико, а идеального амперметра пренебрежимо мало. Поэтому идеальный вольтметр можно заменить на разрыв цепи, а идеальный амперметр — на проводник. Тогда, объединяя точки схемы, к которым подключены амперметры, можно перерисовать её в таком виде (см. рис). Это мост Уитстона, причём сбалансированный (1:2 = 3:6), поэтому через перемычку ток не идёт и её можно просто убрать. В этом случае схема сводится к комбинации параллельного и последовательного соединений, и её сопротивление оказывается равным 8/3 Ом. Тогда полный ток, текущий через источник, равен 3 А.

Так как на сопротивление 5 (в исходной схеме) ток не идёт, то амперметр A_1 показывает ток, текущий от 2 к 6, т. е. в верхней ветви схемы, аналогично амперметр A_2 — ток в нижней ветви. Поскольку при параллельном соединении токи делятся обратно пропорционально сопротивлениям, то A_1 показывает 1 A, A_2 - 2 A.

3. Пар и мокрый снег

В калориметре находится мокрый снег массой $m_c = 200$ г, содержащий 40 % воды (по массе). В калориметр впускают водяной пар массой $m_{\rm II} = 60$ г при температуре 100 °C. Какова будет температура $t_{\rm K}$ содержимого калориметра после того, как в нём установится тепловое равновесие? Удельная теплота парообразования воды L = 2.3 МДж/кг, удельная теплота плавления льда $\lambda = 0.33$ МДж/кг, удельная теплоёмкость воды c = 4.2 кДж/(кг. °C).

Возможное решение

Особенностью этой задачи является *неопределённость конечного состояния*. Действительно, в зависимости от числовых значений данных задачи при установлении теплового равновесия в калориметре может оказаться:

- а) мокрый снег с увеличенным по сравнению с начальным содержанием воды (в таком случае $t_{\rm K} = 0$ °C);
- б) водяной пар и кипяток (в таком случае $t_{\rm k} = 100$ °C);
- в) только вода при температуре 0 °C $\leq t_{\rm K} \leq$ 100 °C;
- б) в конце водяной пар и кипяток.

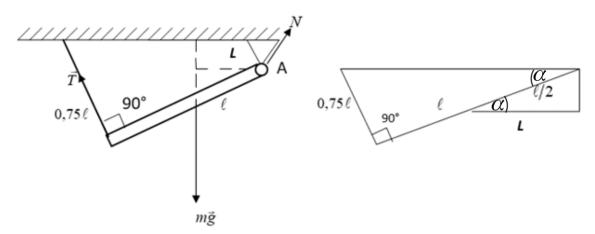
Количество теплоты, выделившееся при конденсации водяного пара:

$$Q_{\scriptscriptstyle
m K} = L m_{\scriptscriptstyle
m II} = 138$$
 кДж.


Количество теплоты, необходимое для плавления снега (в калориметре будет только вода при 0 °C): $Q_{\rm c}=\lambda\cdot 0$,6 $m_{\rm c}=39$,6 кДж.

Количество теплоты, необходимое для нагрева всей воды до 100 °C:

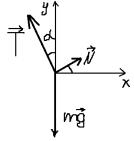
$$Q_{\scriptscriptstyle
m H} = c m_{\scriptscriptstyle
m C} (t_{\scriptscriptstyle
m K} - t_{\scriptscriptstyle
m H}) = 84$$
 кДж.


Так как $Q_{\rm c}+Q_{\rm h}< Q_{\rm K}$, то только часть энергии, выделившейся при конденсации водяного пара, ушла на получение стоградусной воды из мокрого снега. Поэтому весь пар не сконденсировался и реализуется случай б) $t_{\rm k}=100$ °C.

4. Стержень длины l и массой m закреплён на одном конце на оси вращения в точке A, а на другом подвешен на нити длины 0.75 l, образующей прямой угол со стержнем. Найдите натяжение нити и силу, действующую на стержень в точке A. Размером шарнира пренебречь.

Возможное решение

На стержень действует сила тяжести $m\vec{g}$, сила натяжения нити \overrightarrow{T} и сила реакции оси вращения стержня \vec{N} . При равновесии стержня суммы сил и моментов сил, действующих на стержень должны быть равны нулю.



Замечая, что относительно оси вращения подвеса стержня момент силы реакции равен нулю, и приравнивая величины моментов сил тяжести и натяжения нити относительно этой оси, запишем Tl=mgL, где

 $L = \frac{l^2}{2\sqrt{l^2 + (0.75l)^2}} = \frac{2}{5}l$ —плечо силы тяжести (находим из выражений косинуса угла от горизонталей: $cos\alpha = \frac{l}{l/2}$ и $cos\alpha = \frac{l}{\sqrt{(0.75l)^2 + l^2}}$). Из равенства величин

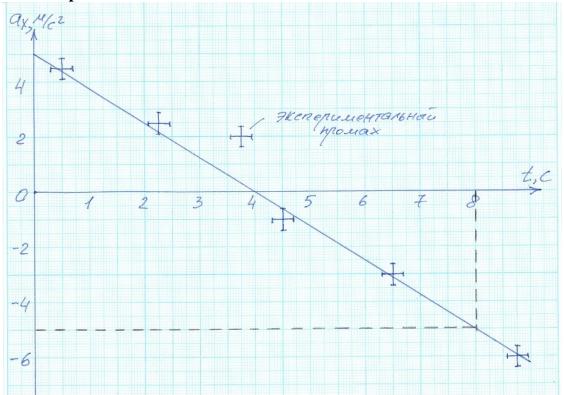
моментов находим $T=\frac{2}{5}mg$. Силу, действующую на стержень со стороны оси вращения, найдём из условия равновесия $m\vec{g}+\vec{T}+\vec{T}$ то которого следует $\vec{N}=-(m\vec{g}+\vec{T})$.

сунке

(где
$$cos\alpha=\frac{L}{l/2}=\frac{\frac{2}{5}l}{l/2}=\frac{4}{5}$$
, тогда $sin\alpha=\sqrt{1-\left(\frac{4}{5}\right)^2}=\frac{3}{5}$), запишем:
$$N_x=Tsin\alpha=\frac{2}{5}mg\cdot\frac{3}{5}=\frac{6}{25}mg;\quad N_y=mg-\frac{4}{5}T=\frac{17}{25}mg;\quad N=\frac{\sqrt{13}}{5}mg.$$
 $N\approx0.72mg.$

5. Дана таблица зависимости проекции ускорения тела, движущегося вдоль оси OX, от времени. Погрешность измерения ускорения составляет 0.4 м/c^2 , а времени $-0.\overline{,}2$ с. Проекция начальной скорости тела равна 2 м/с.

$a_{\rm x}$, m/c^2	4,5	2,5	2,0	- 1,0	- 3,0	- 6,0
t, c	0,50	2,25	3,75	4,50	6,50	8,75


Считать, что на всех временных промежутках, рассматриваемых в задаче, закон изменения ускорения одинаков.

- 1) Построить график зависимости a_x (t) с учётом погрешности измерений.
- 2) Чему равна проекция ускорения тела в момент времени 8 с?
- 3) Определите максимальную скорость движения на промежутке времени от 0 до 12 с.

Оборудование: лист миллиметровой бумаги формата А5.

Примечание: решение без графика $a_x(t)$ оценивается в 0 баллов.

Возможное решение:

- 2) $a_x = -5 \text{ м/c}^2$. Ответ оценивается полным баллом, если найденная проекция ускорения соответствует диапазону [-5,5;-4,5] м/с²(2 балла).
- 3) Изменение скорости за определённый промежуток времени находим как площадь фигуры под графиком a_x (t) с учётом знака (2 балла).

Максимальная скорость в момент времени 12 с равна 28 м/с. Ответ оценивается полным баллом, если найденная скорость соответствует диапазону [25; 31] м/с. (3 балла)

Критерии оценки

Критерии оценки графика

Перечисленные ниже критерии касаются не существа графика, а его оформления. При этом если график является неверным по существу, график не оценивается.

Баллы	Название критерия	Пояснения		
0,5	Размер графика	График должен занимать не менее 70-80 % от		
		предложенного формата миллиметровой		
		бумаги		
0,5	Расположение и	По оси абсцисс откладывается независимая		
	ориентация осей	величина, по оси ординат – зависимая		

	графика	
0,5	Подписывание осей графика	Около осей должны быть указаны откладываемые величины, единицы их измерения и (при необходимости) десятичный множитель
0,5	Оцифровка осей графика	Штрихи на осях должны наноситься через равные интервалы и попадать на основные линии миллиметровой бумаги. При оцифровке штрихов следует использовать натуральные числа и числа, кратные 2, 5. Интервал между числами 2—4 см
0,5	Точки графика	Должны соответствовать таблице и оставаться видимыми на фоне линии. При необходимости наносятся с учётом погрешности измерения
0,5	Линия графика	Плавная кривая. На графиках должны быть проведены «усредняющие» линии. Вместо «усредняющих» линий не допускается проведение ломаных, последовательно соединяющих экспериментальные точки. Линейный участок графика должен строиться по линейке

Критерии и методики оценивания выполненных олимпиадных заданий муниципального этапа всероссийской олимпиады школьников по физике в Архангельской области в 2024/25 учебном году приводятся в соответствии с системой оценивания регионального этапа и осуществляются по критериям, предложенным центральной предметно-методической комиссией. При этом муниципальным предметно-методическим комиссиям рекомендуется оценивать выполнение заданий согласно стандартной методике оценивания решений, если нет специальных указаний.

Каждое задание оценивается в 10 баллов. Максимальный балл – 50. Критерии оценивания

критерии оденивания				
10 баллов	Полное верное решение			
7–9 баллов	Верное решение. Имеются небольшие недочёты, в целом не			
	влияющие на решение. Допущены арифметические ошибки, не			
	влияющие на знак ответа			
5–7 баллов	Задача решена частично, или даны ответы не на все вопросы			
3–5 баллов	Решение содержит пробелы в обоснованиях, приведены не все			
	необходимые для решения уравнения			
1–2 балла	Рассмотрены отдельные важные случаи при отсутствии решения			
	(или при ошибочном решении)			
0 баллов	Решение неверное или отсутствует			