
Всероссийская олимпиада школьников по физике Муниципальный этап. 29.11.2024 г.

10 класс

1. Упал на кол (Зворыгина Е.). Маленький шарик радиусом r вертикально падает на цилиндрический колышек радиусом R=1 см ($r\ll R$), главная ось симметрии цилиндра закреплена перпендикулярно скорости на высоте H=1 м от пола. Скорость шарика перед ударом v=6 м/с.

- 1) Через какое время шарик окажется на высоте 0,5 м от пола, если он ударился о колышек на расстоянии $b = \frac{\sqrt{2}R}{2}$ от вертикального поперечного сечения? (см. рисунок)
- 2) На каком расстоянии по горизонтали от места удара упадёт этот шарик первый раз?

Все удары считайте абсолютно упругими, трения нигде нет, ускорение свободного падения $g=10~\mathrm{m/c^2}.$

Возможное решение

Из-за того, что все поверхности гладкие касательная к поверхности цилиндра компонента скорости сохранится, а нормальная изменится на противоположную.

Так как место удара шарика находится на расстоянии b от вертикального поперечного сечения, получаем угол между скоростью и нормалью к поверхности цилиндра $\alpha = 45^{\circ}$, это означает что шарик отскочит горизонтально с такой же по модулю скоростью v.

Тогда перемещение по вертикали $\Delta y = 0.5H + b = gt^2/2$, следовательно $t \approx 0.32$ с. Найдём полное время T полёта шарика:

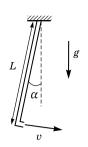
$$H + b = gT^2/2;$$

 $T \approx 0.45 \text{ c.}$

Тогда дальность полёта L:

$$L = vT = 2.7 \text{ M}.$$

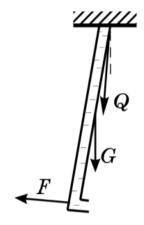
Критерии оценивания


No	Критерий	Балл
1	В решении указано, что сохраняется тангенциальная и изменяется нормальная	2
	компоненты скорости	
2	Показано, что после удара шарик отскочит горизонтально	2
3	Найдено время t	2
4	Найдено время всего полёта T	2
5	Найдена дальность L .	2
Ито	Dro:	10

Примечание для жюри

Полностью правильное решение, полученное неавторским методом, оценивается полным баллом. Недопустимо снижать оценку за «неправильное» оформление или неаккуратные записи. В случае, если при решении пренебрегается R по сравнению с H, необходимо оценивать полным баллом.

Всероссийская олимпиада школьников по физике Муниципальный этап. 29.11.2024 г. **10 класс**


2. Душ (Рубцов Д.). Легкая полая труба длиной L с изогнутым под прямым углом концом висит на шарнирном подвесе. Через нее течет вода со скоростью v. Под каким углом к вертикали располагается труба в состоянии устойчивого равновесия? Для каких скоростей существует такое устойчивое равновесие? Трения нет, ускорение свободного падения g.

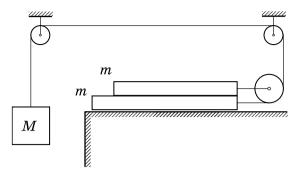
Возможное решение

По II закону Ньютона в импульсной форме, реактивная сила $F=\frac{\Delta m}{\Delta t}v=\rho Sv^2$. Правило моментов относительно шарнирного подвеса $\rho\frac{L}{2}Sg\sin\alpha=\rho Sv^2$. Значит $\sin\alpha=\frac{2v^2}{gL}$.

Так как синус всегда меньше единицы, то устойчивое равновесие справедливо лишь для $v \leq \sqrt{\frac{gL}{2}}$.

Критерии оценивания

11p1110p11110qu1111111111111111111111111		
№	Критерий	Балл
1	II закон Ньютона в импульсной форме	3
2	Правило моментов относительно шарнирного подвеса	3
3	Найден угол α или тригонометрическая функция, позволяющая вычислить α	2
4	Верно найдено условие устойчивости равновесия	2
Итого:		10


Примечание для жюри

Полностью правильное решение, полученное неавторским методом, оценивается полным баллом. Недопустимо снижать оценку за «неправильное» оформление или неаккуратные записи.

Всероссийская олимпиада школьников по физике Муниципальный этап. 29.11.2024 г.

10 класс

3. Начало скольжения (Жигар А.). В системе, изображенной на рисунке, блоки невесомые, трения в осях блоков нет, нити невесомые и нерастяжимые. Нижний прикреплен верхнему жестко К Коэффициенты трения между брусками и между нижним бруском и столом равны $\mu = 0.2$. Массы брусков равны m, а их длины заметно больше их высот. Считая, что бруски не отрываются от горизонтальных поверхностей, найдите:

- При какой минимальной массе груза M, он 1) начнет двигаться?
 - При какой минимальной массе M оба бруска придут в движение? 2)

Возможное решение

Будем рассматривать верхний брусок и прикрепленный к нему блок как единое целое. Запишем законы Ньютона для брусков:

Для верхнего бруска $T - F_{\text{тр1}} = 0$;

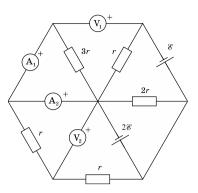
Для нижнего бруска $T - F_{\text{тр1}} - F_{\text{тр2}} = 0$.

- Значит при увеличении массы M от нуля, первым начнет двигаться верхний брусок. 2) В момент начала движения $F_{\text{тр1}} = \mu N = \mu (mg T)$, тогда $M = \frac{\mu m}{1 + \mu} = m/6$
- При дальнейшем увеличении M, ускорения груза и верхнего бруска одинаковы до момента начала движения нижнего бруска. Нижний брусок начнет скользить, когда сила трения между нижним бруском и столом достигнет силы трения скольжения $F_{\mathrm{Tp2}} = \mu N_2$.
- 4) Распишем 2 закон Ньютона в проекциях на вертикальные и горизонтальные оси для трех тел:

$$\begin{cases} Mg - T = Ma \\ N + T - mg = 0 \\ T - \mu N = ma \\ N_2 - N - mg = 0 \\ T - \mu N - \mu N_2 = 0 \end{cases}$$

Решив систему, получим $M = \frac{3\mu m}{1-\mu^2} = 5m/8$.

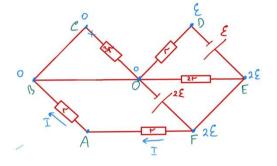
критерии оценивания		
№	Критерий	Балл
1	Указано, что в первом случае проскальзывать начнёт верхний брусок	1
2	Верно найдена сила трения скольжения при проскальзывании верхнего бруска	1
3	Найдена минимальная масса M для первого случая	1
4	Записана или используется при решении кинематическая связь на равенство ускорений	1
	груза и верхнего бруска	
5	Записано условие проскальзывания нижнего бруска $F_{\rm rp2} = \mu N_2$	1
6	Записан второй закон Ньютона для груза	0,5
7	Записан второй закон Ньютона на горизонтальную ось для верхнего бруска	0,5
8	Записан второй закон Ньютона на горизонтальную ось для нижнего бруска	0,5
9	Записан второй закон Ньютона на вертикальную ось для нижнего бруска	0,5
10	Найдена минимальная масса M для второго случая	3
Ито	DFO:	10


Примечание для жюри

Полностью правильное решение, полученное неавторским методом, оценивается полным баллом. Недопустимо снижать оценку за «неправильное» оформление или неаккуратные записи.

Всероссийская олимпиада школьников по физике Муниципальный этап. 29.11.2024 г.

10 класс


4. Втекает и вытекает (Еськин М.). Определите показания идеальных приборов в цепи, схема которой изображена на рисунке. Так как приборы имеют полярность, считайте, что если ток втекает в контакт "+", то показания амперметра положительные, если в "–", то показания амперметра отрицательные. Для вольтметра считайте, что если потенциал у контакта "+" больше, то напряжение положительно и наоборот, если потенциал больше у контакта "–". Сопротивление резисторов (r = 5 кОм) и ЭДС источников ($\varepsilon = 5$ В) указаны на схеме.

Возможное решение

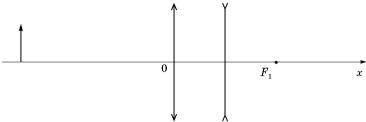
Так как приборы идеальные, то можем заменить вольтметры на разрыв цепи, а амперметры на перемычки. Используя метод узловых потенциалов расставим потенциалы в узлах.

- 1. Видно, что ток по резистору OC не потечет изза равенства потенциалов. Значит не будет тока в амперметре A_1 . То есть I_1 =0 A.
- 2. Из рисунка видно, что разность потенциалов на первом вольтметре $U_1 = \varepsilon = 5$ В. При этом больший потенциал находится у положительного контакта, а значит показания вольтметра будут положительными.

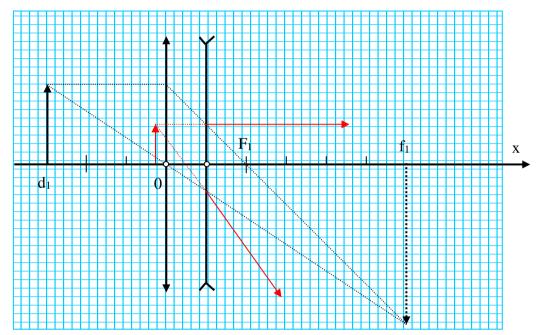
3. Ток через второй амперметр определяется токами, протекающими через узел B. По ребру BC ток не протекает, а значит ток через амперметр A_2 будет равен току I протекающему по резистору BA. Этот ток определим из правила Кирхгофа для узлов B и F:

$$I = 2\varepsilon \ 2r = 1 \text{ MA}$$

То есть ток через амперметр A_2 будет равен $I_2 = 1$ мА. Но так как он втекает в отрицательный контакт амперметра, то знак тока будет "—". Итоговый ответ: $I_2 = -1$ мА.


4. Напряжение на вольтметре V_2 определяется как разность потенциалов между узлами OA. Зная, что $Ir = \varepsilon$, можем найти потенциал в точке A. Он будет равен ε . Значит разность потенциалов между узлами будет: $U_2 = -\varepsilon = -5$ В

Критерии оценивания


No	Критерий	Балл
1	Приборы заменены на разрыв цепи и перемычки	1
2	Расставлены потенциалы во всех возможных узлах	2
3	Определен модуль напряжения первого вольтметра $U_1 = 5 \text{ B}$	1
4	Определено показание первого амперметра $I_1 = 0$ A	1
5	Записано правило Кирхгофа для узлов ВБ	1
6	Определен модуль тока $I_2 = 1$ мА	1
7	В ответе верный знак тока I_2 —"—"	1
8	Определен модуль напряжения $U_2 = 5 \text{ B}$	1
9	В ответе верный знак напряжения U_2 - "-"	1
Итого:		10

Примечание для жюри

Полностью правильное решение, полученное неавторским методом, оценивается полным баллом. Недопустимо снижать оценку за «неправильное» оформление или неаккуратные записи. **5.** Система линз (Зайцев Р.). Определите координату, увеличение и вид изображения предмета в системе двух тонких линз с общей главной оптической осью. Первая линза — собирающая с фокусным расстоянием $F_1 = 2F$ и находится в начале координат. Вторая линза — рассеивающая с фокусным расстоянием $F_2 = F$. Расстояние между линзами S = F. Предмет расположен перед собирающей линзой на расстоянии 3F. Ось системы координат направим «вправо». Постройте примерный ход двух лучей при преломлении света в системе линз.

Возможное решение

Действительный предмет для первой линзы $-d_1 = 3F$. Первоначально рассчитываем положение изображения в первой линзе (действительное, увеличенное, перевернутое)

$$f_1 = \frac{3F \cdot 2F}{3F - 2F} = 6F.$$

«Предмет» (первое изображение) относительно второй линзы расположен справа, поэтому

 $d_2 = -5F < 0$. «Рабочий» второй фокус — отрицательный. Рассчитываем положение второго изображения (мнимое, уменьшенное, прямое)

$$f_2 = \frac{(5F)\cdot(-F)}{5F-F} = -\frac{5}{4}F.$$

Рассчитываем первый и второй коэффициенты увеличения

$$k_1 = \frac{6F}{3F} = 2.$$

Всероссийская олимпиада школьников по физике Муниципальный этап. 29.11.2024 г. **10 класс**

$$k_2 = \frac{5F}{4 \cdot 5F} = \frac{1}{4}.$$

Общий коэффициент увеличения оптической системы равен произведению коэффициентов увеличения ее составных частей.

$$k = k_1 \cdot k_2 = 2 \cdot 0.25 = 0.5.$$

Таким образом, изображение в оптической системе находится в отрицательной области относительно первой линзы $(-F/4 = -F_1/8)$. Изображение уменьшено в два раза, является «прямым» и «мнимым». Примерный ход двух световых лучей показан на рисунке выше.

Критерии оценивания

No	Критерий	Баллы
1	Первоначально рассчитываем положение изображения в первой линзе	1
	(действительное, увеличенное, перевернутое)	
	$f_1 = \frac{3F \cdot 2F}{3F - 2F} = 6F.$	
2	«Предмет» (первое изображение) относительно второй линзы расположен справа,	0,5
	поэтому	
	$d_2 = -5F < 0.$ «Рабочий» второй фокус - отрицательный.	
3	«Рабочий» второй фокус - отрицательный.	0,5
4	Рассчитываем положение второго изображения (мнимое, уменьшенное, прямое)	1
	$f_2 = \frac{(5F)\cdot(-F)}{5F-F} = -\frac{5}{4}F.$	
5	Рассчитываем первый коэффициент увеличения	0,5
	$k_1 = \frac{6F}{3F} = 2.$	
6	Рассчитываем второй коэффициент увеличения	0,5
	$k_2 = \frac{5F}{4 \cdot 5F} = \frac{1}{4}.$	
7	Общий коэффициент увеличения оптической системы равен произведению коэффициентов увеличения ее составных частей.	0,5
	$k = k_1 \cdot k_2 = 2 \cdot 0.25 = 0.5.$	
8	Изображение в оптической системе находится в отрицательной области относительно	1,5
	первой линзы (- $F/4 = -F_1/8$) (1 балл)	
	Изображение уменьшено в 2 раза, является «прямым» и «мнимым» (0,5 балла)	
9	Верно построен ход 2 лучей после преломления в собирающей линзе (без учета рассеивающей линзы) (по 1 баллу за луч)	2

Всероссийская олимпиада школьников по физике Муниципальный этап. 29.11.2024 г. **10 класс**

10	Верно построен ход 2 лучей после преломления в рассеивающей линзе (по 1 баллу за	2
	луч)	

Примечание для жюри

Полностью правильное решение, полученное неавторским методом, оценивается полным баллом. Недопустимо снижать оценку за «неправильное» оформление или неаккуратные записи.