

Всероссийской олимпиады школьников в 2024-2025 учебном году

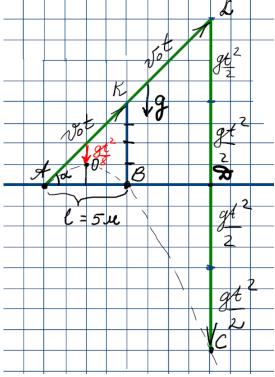
Предмет	Класс	Дата	Время начала	Время окончания
физика	10	11.11.2024	10.00	13.00

1. Полет по клеточкам

Экспериментатор Никита записывал на камеру бросок шарика поле тяжести. Затем ОН перерисовал получившуюся траекторию в тетрадь, сохранив масштаб. Он отметил три точки, в которых шарик побывал последовательно (точки А, В и С). Затем пришла маленькая сестра Никиты и стерла рисунок так, что остались видны только три отмеченные точки, причем точки A и Bодной высоте. По находятся на данным точкам восстановите самую верхнюю точку траектории. Опишите построение. Зная, что между точками A и B было расстояние l = 5 м, найдите время полета между данными точками. Найдите значение скорости в точке A, и под каким углом к горизонту она была направлена. Ускорение свободного падения возьмите $g=10 \text{ м/c}^2$.

Возможное решение:

Промежутки времени между точками A и B и между точками B и C равны, так как по горизонтали пройдены одинаковые расстояния (движение по горизонтали равномерное). Запишем в векторной форме перемещение тела за время t и за время 2t:


$$\overrightarrow{AB} = \overrightarrow{v_0}t + \overrightarrow{g}\frac{t^2}{2}$$

$$\overrightarrow{AC} = 2\overrightarrow{v_0}t + \overrightarrow{g}\frac{(2t)^2}{2} = 2\overrightarrow{v_0}t + 4\overrightarrow{g}\frac{t^2}{2}$$

Где v_0 – скорость в точке A, если нарисовать эти вектора, то

$$KB = \frac{1}{4}LC = \frac{1}{2}LD = \frac{1}{2}CD,$$

Тогда через точки А и В проводим горизонтальную прямую, опускаем перпендикуляр из точки С на эту

прямую, ставим точку D, делим расстояние CD пополам по клеточкам или с помощью циркуля и линейки и откладываем такое же расстояние вертикально вверх от точки B,

Всероссийской олимпиады школьников в 2024-2025 учебном году

Предмет	Класс	Дата	Время начала	Время окончания
физика	10	11.11.2024	10.00	13.00

ставим точку К. Соединяем точки А и К - $\overrightarrow{AK} = \overrightarrow{v_0}t$. Из построенного видно, что длины $|\overrightarrow{AB}| = |\overrightarrow{BK}|$, тогда скорость направлена равна под углом $\alpha = 45^\circ$ к горизонту.

Т.к. длина
$$|\overrightarrow{AB}| = |\overrightarrow{BK}| = l = 5$$
 м, получаем $g\frac{t^2}{2} = 5$, и $t = 1c$.

$$v_x t = v_0 t cos \alpha = \left| \overrightarrow{AB} \right| = l = 5$$
, тогда $v_0 = \frac{l\sqrt{2}}{t} \approx 7$ м/с.

Вершина параболы находится посередине между точками А и В.

$$\overrightarrow{AO} = \overrightarrow{v_0} \frac{t}{2} + \overrightarrow{g} \frac{(t/2)^2}{2} = \overrightarrow{v_0} \frac{t}{2} + \overrightarrow{g} \frac{t^2}{8}$$

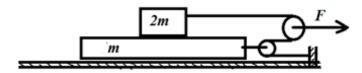
Чтобы найти точку О надо провести перпендикуляр к середине отрезка AB и отложить вертикально вниз от точки пересечения с \overrightarrow{AK} отрезок $g\frac{t^2}{8} = \frac{KB}{4}$ (предварительно необходимо поделить KB на четыре части).

Всероссийской олимпиады школьников в 2024-2025 учебном году

Предмет	Класс	Дата	Время начала	Время окончания
физика	10	11.11.2024	10.00	13.00

Критерии оценивания:

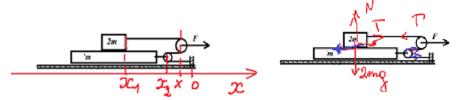
		баллы
1.	Равенство времен между A и B, между точками B и C, так как движение по горизонтали равномерное	1
2.	Выписано векторно $\overrightarrow{AB} = \overrightarrow{v_0}t + \overrightarrow{g}\frac{t^2}{2}$	1
3.	$\overrightarrow{AC} = 2\overrightarrow{v_0}t + \overrightarrow{g}\frac{(2t)^2}{2} = 2\overrightarrow{v_0}t + 4\overrightarrow{g}\frac{t^2}{2}$	1
4.	$\overrightarrow{AO} = \overrightarrow{v_0} \frac{t}{2} + \overrightarrow{g} \frac{(t/2)^2}{2} = \overrightarrow{v_0} \frac{t}{2} + \overrightarrow{g} \frac{t^2}{8}$	1
5.	Описано и обосновано построение КВ (или вектора $\overrightarrow{v_0}t$)	1
6.	Найдено время t = 1c	1
7.	Найден угол $\alpha = 45^{\circ}$	1
8.	Найдена скорость $v_0 = \frac{l\sqrt{2}}{t} \approx 7$ м/с	1
9.	Описано построение точки О (вершины параболы)	2
	Сумма баллов:	10


Комментарии: часть этапов может быть решено стандартно через координаты, тогда п.2, п.3 и п.4 ставится полный балл за два правильных уравнения по оси х и у соответственно. В п.5 и п.9 требуется описание (и обоснование) метода построения, подразумевается, что мы умеем выполнять *стандартные* процедуры построений с помощью циркуля и линейки (т.е. строить перпендикуляры, делить пополам, откладывать отрезок с помощью циркуля, проводить параллельные прямые), здесь можно использовать еще клеточки.

Всероссийской олимпиады школьников в 2024-2025 учебном году

Предмет	Класс	Дата	Время начала	Время окончания
физика	10	11.11.2024	10.00	13.00

2. «Сила есть...»


Систему грузов, имеющих массы 2m и m, тянут с помощью подвижного блока по гладкой горизонтальной поверхности, прикладывая горизонтальную силу F (см. рис.). Найдите ускорения тел, ускорение верхнего блока и силу натяжения нити. При каких значениях силы F грузы не будут проскальзывать друг по другу? Коэффициент трения между грузами μ . Массами блоков и нити можно пренебречь. Нить нерастяжима, ее свободные отрезки горизонтальны. Ускорение свободного падения g.

Возможное решение:

В общем случае запишем 2 закон Ньютона для тел, условие невесомости блока и нерастяжимости нити (кинематическая связь):

$$F=2T$$
 (1) для верхнего блока $2ma_1=T+F_{
m Tp}$ (2) верхнее тело по Ox $N=2mg$ (3) верхнее тело по Oy $ma_2=2T-F_{
m Tp}$ (4) нижнее тело вместе с блоком $a=rac{a_1+2a_2}{2}$ (5) ускорение блока из кин. связи

Кинематическую связь можно записать через неизменность длины нити:

$$(x - x_1) + (x - x_2) + (0 - x_2) = const$$

Откуда получается связь ускорений:

$$2a = 2a_2 + a_1$$

Или записать метод малых перемещений, или метод виртуальной работы:

$$F\Delta x=T\Delta x_1+2T\Delta x_2$$
, тогда $2T\Delta x=T\Delta x_1+2T\Delta x_2$ и $2a=2a_2+a_1$

Всероссийской олимпиады школьников в 2024-2025 учебном году

Предмет	Класс	Дата	Время начала	Время окончания
физика	10	11.11.2024	10.00	13.00

Сила трения направлена вперед для верхнего тела, можно посмотреть силы и ускорения без трения, либо рассматривать два случая исходно.

<u>В момент начала проскальзывания</u> возникает пограничная ситуация: в системе действует максимально возможная сила трения $F_{\rm rp} = \mu N$, но ускорения грузов одинаковы.

$$\begin{cases} 2ma_1 = \frac{F}{2} + 2\mu mg & \text{верхнее тело по } Ox \\ ma_1 = F - 2\mu mg & \text{нижнее тело вместе с блоком} \\ a = 1,5a_1 & \text{ускорение блока} \end{cases}$$

Получаем $a=0.75\frac{F}{m}$, $a_1=a_2=0.5\frac{F}{m}$; $F^*=4\mu mg$

Если $F \leq F^* = 4\mu mg$ проскальзывание между телами отсутствуем, они двигаются как одно целое с ускорениями $a_1 = a_2 = 0.5 \, \frac{F}{m}, \, T = \frac{F}{2},$ получить ускорение можно и из уравнения движения двух тел вместе с одним ускорением $(3ma_1 = \frac{3F}{2})$

Если $F \geq F^* = 4\mu mg$ возникает проскальзывание между телами тогда $F_{\rm rp} = \mu N$:

$$\begin{cases} 2ma_1 = rac{F}{2} + 2\mu mg & \text{верхнее тело по } Ox \ ma_2 = F - 2\mu mg & \text{нижнее тело вместе с блоком} \ a = rac{a_1 + 2a_2}{2} = rac{a_1}{2} + a_2 & \text{ускорение блока} \end{cases}$$
 $a_1 = rac{F}{4m} + \mu g & \text{верхнее тело} \ a_2 = rac{F}{m} - 2\mu g & \text{нижнее тело} \ a = rac{9F}{8m} - rac{3}{2}\mu g & \text{ускорение блока} \end{cases}$

Ответ: Проскальзывание есть при $F \ge 4\mu mg$, $a_1 = \frac{F}{4m} + \mu g$; $a_2 = \frac{F}{m} - 2\mu g$; $a = \frac{9F}{8m} - \frac{3}{2}\mu g$, $T = \frac{F}{2}$

Проскальзывания нет при $F \le 4\mu mg$, при этом $a = 0.75 \frac{F}{m}$; $a_1 = a_2 = 0.5 \frac{F}{m}$, $T = \frac{F}{2}$

Всероссийской олимпиады школьников в 2024-2025 учебном году

Предмет	Класс	Дата	Время начала	Время окончания
физика	10	11.11.2024	10.00	13.00

Критерии оценивания:

		баллы
1.	Определена сила натяжения нити (1)	0,5
2.	Правильно выбрано направление силы трения	0,5
3.	Записан 2-й закон Ньютона для верхнего груза (2)	1
4.	Записан 2-й закон Ньютона для нижнего груза (4)	1
5.	Найдена N для верхнего груза (3)	0,5
6.	Выражено ускорение блока через ускорения грузов (5)	1
7.	Указано условие начала проскальзывания грузов	0,5
8.	Найдены ускорения при отсутствии проскальзывания $a = 0.75 \frac{F}{m}$ (0,5 балла); $a_1 = a_2 = 0.5 \frac{F}{m}$ (0,5 балла)	1
9.	Найдены значения силы F , при которых проскальзывание отсутствует $F \leq 4 \mu mg$	1
10.	Найдены ускорения при наличии проскальзывания $a_1 = \frac{F}{4m} + \mu g; \ a_2 = \frac{F}{m} - 2\mu g; \ a = \frac{9F}{8m} - \frac{3}{2}\mu g$ (по одному баллу за каждое)	3
	Сумма баллов:	10

Всероссийской олимпиады школьников в 2024-2025 учебном году

Предмет	Класс	Дата	Время начала	Время окончания
физика	10	11.11.2024	10.00	13.00

3. Упругое столкновение

Ядра гелия — альфа-частицы — после упругого столкновения с ядрами атомов мишени и отклонении на прямой угол имеют кинетическую энергию в два раза меньшую начальной. Каково отношение массы ядер атомов мишени к массе альфа-частиц? Предположите, из чего сделана мишень.

Возможное решение:

Если энергия альфа-частицы стала в два раза меньше $\frac{mv^2}{4} = \frac{mu^2}{2}$, то ее скорость стала равной $u = v/\sqrt{2}$. Пусть масса мишени в k раз больше массы альфа-частицы, а w скорость мишени после взаимодействия, запишем закон сохранения энергии и закон сохранения импульса:

$$\frac{mv^2}{2} = \frac{mv^2}{4} + \frac{kmw^2}{2}$$
$$m\vec{v} = m\vec{u} + km\vec{w}$$

Т.к. альфа-частица отклоняется под прямым угол, запишем теорему Пифагора: $(kmw)^2 = (mv)^2 + (mu)^2$, подставляем скорость u, получаем простую систему:

$$(kmw)^2 = \frac{3}{2}(mv)^2$$
$$kmw^2 = \frac{mv^2}{2}$$

и находим k=3, тогда масса атомов мишени $\mu=3*4=12$ г/моль, что соответствует углероду, значит материалом мишени моет быть алмаз или графит.

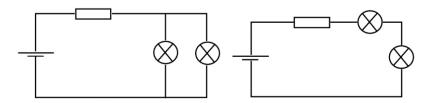
 $m\vec{v}$

Всероссийской олимпиады школьников в 2024-2025 учебном году

Предмет	Класс	Дата	Время начала	Время окончания
физика	10	11.11.2024	10.00	13.00

Критерии оценивания:

	Этапы решения	соотношения	Балл
1	Найдена скорость альфа-частицы после взаимодействия	$u = v/\sqrt{2}$	1
2	Закон сохранения энергии	$\frac{mv^2}{2} = \frac{mv^2}{4} + \frac{kmw^2}{2}$	2
3	Закон сохранения импульса (векторно или сразу рисунок)	$m\vec{v} = m\vec{u} + km\vec{w}$	1
4	Записана теорема Пифагора для треугольника импульсов, или правильно расписаны два уравнения по осям	$(kmw)^2 = (mv)^2 + (mu)^2$	2
5	Найдено отношение масс	k = 3	2
6	Получена масса атомов мишени	μ = 3*4=12 г/моль	1
7	Сделан вывод, что это углерод (графит, алмаз)	С	1
		Итого:	10


Всероссийской олимпиады школьников в 2024-2025 учебном году

I, мА. 80

Предмет	Класс	Дата	Время начала	Время окончания
физика	10	11.11.2024	10.00	13.00

4. BAX!

Две одинаковых лампы подключили в схему сначала параллельно, а потом последовательно. Мощность, выделяемая на каждой лампе, оказалась одинаковой в обоих случаях. Найдите эту мощность, если напряжение идеальной батареи $U_0 = 24~\mathrm{B}$. Найдите сопротивление резистора. Какая мощность будет выделяться на лампе, если собрать схему из последовательно соединенных одной лампы, того же сопротивления и идеальной батареи с напряжением $U = 16~\mathrm{B}$?

Вольтамперная характеристика (зависимость тока от напряжения) лампы приведена на рис.

Возможное решение:

В первой схеме ток через резистор равен $2I_1$ (параллельное соединение лампочек), тогда $U_0 = 2I_1R + U_1$,

где R – сопротивление резистора, U_1 и I_1 – напряжение и ток на лампочках,

Во второй схеме лампочки соединены последовательно, ток через резистор равен току в лампочках, а напряжения на лампочках складываются (U_2 – напряжение на каждой из лампочек во второй схеме)

$$U_0 = I_2 R + 2U_2$$

Мощность на каждой лампочке $P = I_1U_1$ в первой схеме равна I_2U_2 во второй схеме, поэтому токи и напряжения на лампочках в первой и второй схеме равны.

Приравнивая токи и напряжения и получаем простую систему уравнений:

$$U_0 = 2I_1R + U_1;$$

$$U_0 = I_1 R + 2U_1,$$

откуда находим $U_1 = U_2 = U/3 = 8B$, ток в лампочке находим, используя BAX, $I_1 = I_2 = 40$ мA, затем находим R = 200 Ом.

Находим мощность, выделяемую на лампочках $P = I_1U_1 = 320 \text{ мBt} = 0.32 \text{ Bt}$

Для новой батарейки пишем $U = I_n R + U_n$, получаем зависимость

ВС{}Ш всероссийская олимпида олимпида

Муниципальный этап

Всероссийской олимпиады школьников в 2024-2025 учебном году

Предмет	Класс	Дата	Время начала	Время окончания
физика	10	11.11.2024	10.00	13.00

 $I_{\pi} = U/R - U_{\pi}/R$, проводим эту прямую (нагрузочная прямая) $I_{\pi} = (80 - 5U_{\pi})$ мА и находим ток и напряжение на лампочке, как точку пересечения нагрузочной прямой и ВАХа. Получаем $I_{\pi} = 40$ мА, $U_{\pi} = 8$ В, и мощность $P = I_{\pi}U_{\pi} = 0,32$ Вт, такую же, как и в первых двух схемах.

Критерии оценивания:

	этапы решения	соотношения	балл
1.	Закон Ома для полной цепи (правила Кирхгофа)	$U_0 = 2I_1R + U_1$	2
	для 1 схемы (Если использует $R_{\scriptscriptstyle \Lambda}$, то получает 1		
	балл)		
2.	Закон Ома для полной цепи (правила Кирхгофа)	$U_0 = I_2 R + 2U_2$	2
	для 2 схемы (Если использует $R_{\scriptscriptstyle \Lambda}$, то получает 1		
	балл)		
3.	Мощность на лампочках	$P = I_1U_1 = I_2U_2$	1
	(Если использует $R_{\scriptscriptstyle \Pi}$ и пишет $P=I^2$ $R_{\scriptscriptstyle \Pi}$, то получает 0)		
4.	Нашли напряжение на лампочке	$U_1 = U_2 = U/3 = 8B$	1
5.	Используя ВАХ нашли ток на лампочке	$I_1 = I_2 = 40 \text{ MA}$	0,5
6.	Нашли мощность	P = 0.32 BT	0,5
7.	Для новой батарейки	$U = I_{\pi}R + U_{\pi}$	1
8.	Построили нагрузочную прямую	$I_{\rm Л} = (80 - 5 U_{\rm I}) {\rm MA}$	1
9.	Нашли ток и напряжение	$I_{J} = 40 \text{ MA}, U_{J} = 8B$	0,5
10.	Нашли мощность	$P = I_{\pi}U_{\pi} = 0.32 \text{ BT}$	0,5
		сумма за задачу:	10

Комментарии: Часть этапов могут быть объединены. Если используют сопротивление лампы, то за первую часть (π .1 – π .6 ставится 4 балла при правильном нахождении всех величин.)

Во второй части (п. 7 – п.10), если используется R_n , то максимум 1 балл, могут быть решения, где складываются ВАХ лампочки и ВАХ резистора, в этом случае, при правильном нахождении параметров также ставится полный балл)

Всероссийской олимпиады школьников в 2024-2025 учебном году

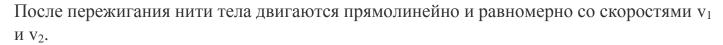
Предмет	Класс	Дата	Время начала	Время окончания
физика	10	11.11.2024	10.00	13.00

5. В отрыв!

Два тела массы m и 4m, связанные нитью длины l, вращаются на гладкой горизонтальной поверхности. Натяжение нити равно T. Нить пережигают, и тела начинают разлетаться. Найдите время, через которое расстояние между телами увеличится в два раза.

Возможное решение:

Тела вращаются исходно с одинаковой угловой скоростью вокруг центра масс, по окружностям с радиусами $R_1 = 4l/5$ и $R_2 = l/5$ соответственно. Расстояния до центра масс можно найти или из определения центра масс, или записав 2 закон Ньютона для обоих тел.


$$ma_1 = m\omega^2 R_1 = T$$

$$4ma_2 = 4m\omega^2 R_2 = T$$

$$a_I = \omega^2 R_I = v_1^2 / R_I$$

$$a_2 = \omega^2 R_2 = v_2^2 / R_2$$

$$\omega^2 = \frac{5T}{4ml}$$

Расстояние между ними AB = L через время t выражаем через теорему Пифагора.

$$L = \sqrt{(v_1 t)^2 + (\frac{4l}{5})^2} + \sqrt{(v_2 t)^2 + (\frac{l}{5})^2} = l\sqrt{\omega^2 t^2 + 1} = l\sqrt{\frac{5Tt^2}{4ml} + 1}$$

Ищем
$$t$$
 при $L=2l$
$$t=2\sqrt{\frac{3ml}{5T}}$$

Всероссийской олимпиады школьников в 2024-2025 учебном году

Предмет	Класс	Дата	Время начала	Время окончания
физика	10	11.11.2024	10.00	13.00

Критерии оценивания:

	этапы решения	соотношения	балл
1.	Вращение вокруг центра масс по	$R_1 = 4l/5$ и $R_2 = l/5$	1
	соответствующим радиусам		
2.	Найдены центростремительные ускорения	$a_I = \omega^2 R_I = v_1^2 / R_I$	1
		$a_2 = \omega^2 R_2 = \mathbf{v}_2^2 / R_2$	
3.	Записан второй закон Ньютона (если уже	$ma_I = m\omega^2 R_I = T$	1
	найдены R_1 и R_2 достаточно одного	$4ma_2 = 4m\omega^2 R_2 = T$	
4.	Выражены v_1 или v_2 или ω (или их квадраты)	$v_1^2 = \frac{4Tl}{5m}$ $v_2^2 = \frac{Tl}{20m}$ $\omega^2 = \frac{5T}{4ml}$	2
	через Т	$\frac{3m}{Tl}$	
		$ u_2 - \frac{1}{20m} $	
		$\omega^2 = \frac{31}{4ml}$	
5.	Разлет тел. Прямолинейное движение.	THE	2
	Рисунок.		
6.	Использование теоремы Пифагора для		1
	выражения расстояния между телами через		
	время t после пережигания нити. 2		
	прямоугольных треугольника (можно		
	подобие и один большой)		
7.	Hайдено время t	3ml	2
		$t = 2\sqrt{\frac{3ml}{5T}}$	
	Сумма за задачу:		10

Комментарии: Часть этапов могут быть объединены. Центр масс можно не находить, можно найти радиусы в том числе из подобия треугольников, тогда нужна связь v с угловой скоростью.

Всероссийской олимпиады школьников в 2024-2025 учебном году

Предмет	Класс	Дата	Время начала	Время окончания
физика	10	11.11.2024	10.00	13.00

Рекомендации для жюри

Каждая задача оценивается из 10 баллов. Участники олимпиады могут предложить полные и верные решения задач, отличные от приведённых в ключе. За это они должны получить полный балл. Частичное решение или решение с ошибками оценивается, ориентируясь на этапы решения, приведённые в разбалловке. При этом верные выводы из ошибочных допущений не добавляют баллов. Если какой-то этап решения не полный, или частично правильный, то он оценивается частью баллов за этап. Если в решении участника олимпиады предложенные этапы объединены как один, то оценка проводится из суммарного балла. Наличие лишь ответа без решения не оценивается. При наличии у участника двух решений без указания, какое он считает верным, оценка проводится по худшему. Для удобства работы жюри решения и критерии оценки для каждой задачи приведены на отдельной странице и при необходимости снабжены комментарием. К некоторым задачам может приводиться два варианта решения. Следует держаться духа и буквы предлагаемой разбалловки, чтобы обеспечить сопоставимость проверки на разных площадках проведения.

С вопросами по критериям оценок можно обратится или по электронной почте <u>masha.yuldasheva@mail.ru</u> или по телефону 8-913-940-45-06 к председателю предметнометодической комиссии олимпиады *Юлдашевой Марии Рашидовне*.