
Решения задач 10 класс.

1. На горизонтальной поверхности лежит массивный клин с углами при вершинах $\alpha = 90^{\circ}$, $\beta < \gamma$. На боковые грани клина ставят тела одинаковой массы m. В какую сторону начнет двигаться клин? Трение между клином и горизонтальной поверхностью, а также между телами и клином отсутствует.

Возможное решение

Расставим силы, действующие на массы и на клин со стороны масс.

 ${f N}_1$ и ${f N}_2$ — силы реакции опоры, m ${f g}$ - сила тяжести, ${f P}_1$ и ${f P}_2$ - силы нормального давления

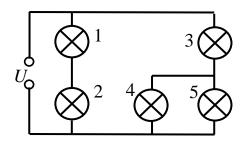
Если проекции сил нормального давления на ось x $|P_{1x}| = |P_{2x}|$, то клин будет неподвижен, если $|P_{1x}| > |P_{2x}|$, клин будет двигаться влево, $|P_{1x}| < |P_{2x}|$, клин будет двигаться вправо.

По III закону Ньютона $\mathbf{P}_1 = -\mathbf{N}_1$ и $\mathbf{P}_2 = -\mathbf{N}_2$. Силы реакции опоры принимают такие значения, чтобы равнодействующие $\mathbf{F}_1 = m\mathbf{g} + \mathbf{N}_1$ и $\mathbf{F}_2 = m\mathbf{g} + \mathbf{N}_1$ были направлены вниз параллельно соответствующим граням клина.

Из прямоугольных треугольников, сторонами которых являются векторы \mathbf{F}_1 , $m\mathbf{g}$, \mathbf{N}_1 и \mathbf{F}_2 , $m\mathbf{g}$, \mathbf{N}_2 можно определить длины катетов \mathbf{N}_1 и \mathbf{N}_2 :

 $N_1 = mg \cos \beta$, $N_2 = mg \cos \gamma = mg \cos(\pi/2 - \beta) = mg \sin \beta$. Величины проекций сил реакции опоры на ось х равны величинам проекций соответствующих сил нормального давления и определяются формулами

$$|P_{1x}| = |N_{1x}| = mg \cos \beta \sin \beta,$$


$$|P_{2x}| = |N_{2x}| = mg \sin \beta \cos \beta.$$

Таким образом, $|P_{1x}| = |P_{2x}|$, и клин останется в покое.

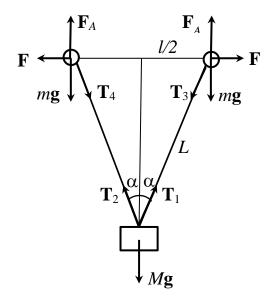
Критерии оценивания

2 балла
2 балла
2 балла
2 балла
2 балла

2. Пять одинаковых лампочек включают в цепь по схеме, изображенной на рисунке. Какая из лампочек горит ярче всех, а какая слабее всех? Почему?

Возможное решение

Сопротивление участка с лампочками 1 и 2 равно $r_{12}=2r$, r- сопротивление одной лампочки. Сопротивление участка с лампочками 3, 4, 5 равно $r_{345}=r+\frac{r\cdot r}{r+r}=1.5r$. Через лампочки 1 и 2 течет ток $I_{12}=\frac{U}{2r}$. Через лампочку 3 течет ток $I_3=\frac{U}{1.5r}$, через лампочки 4 и 5 течет ток $I_{4(5)}=\frac{1}{2}I_3=\frac{U}{3r}$. Количество теплоты, выделяемое лампочкой за время t равно $Q=I^2rt$. Поэтому ярче всех горит лампочка 3, т. к. через нее течет самый большой ток, слабее всех - лампочки 4 и 5.


Критерии оценивания

1.Записано сопротивление участка с лампочками 1 и 2	1 балл
2.Записано сопротивление участка с лампочками 3, 4, 5:	1 балл
3.Записаны значения тока через лампочки 1 и 2:	1 балл
4.Записано значение тока через лампочку 3:	1 балл
5.Записаны значения тока через лампочки 4 и 5:	1 балл
6. Записан закон о количестве тепла за единицу времени	2 балла
7. Найдены лампочки, которая горит ярче всех и слабее всех	3 балла

3. Тело массой M=5 г подвешено с помощью тонких невесомых нитей длиной L=1 м каждая к двум, наполненным гелием шарикам, которые несут на себе одинаковые электрические заряды. Система, зависнув в воздухе, находится в положении равновесия. Расстояние между центрами шариков много больше их радиусов и составляет l=40 см. Найти заряды на шариках.

Возможное решение

Расставим силы, действующие в системе.

Т. к. тело находится в равновесии, то
$$M\mathbf{g} + \mathbf{T}_1 + \mathbf{T}_2 = 0$$
. (1)

Для правого шарика условие равновесия имеет вид:

$$m\mathbf{g} + \mathbf{T}_3 + \mathbf{F} + \mathbf{F}_A = 0 \tag{2}$$

В силу симметрии системы $|\mathbf{T}_1| = |\mathbf{T}_2| = |\mathbf{T}_3| = |\mathbf{T}_4| = T$.

Проецируем (1) на вертикальное направление

$$Mg - 2T\cos\alpha = 0. (3)$$

Проецируем (2) на горизонтальное направление $F - T \sin \alpha = 0$.

(4)

Из прямоугольного треугольника с гипотенузой L и катетом l/2 определим

$$\sin \alpha = \frac{l}{2L}.$$
 (5)

Из системы уравнений (3) - (5) определим силу Кулона F

$$F = \frac{Mgl}{2\sqrt{4L^2 - l^2}} \,.$$

По закону Кулона $F = \frac{q^2}{4\pi\varepsilon_0 l^2}$, тогда

$$q=l\sqrt{rac{2\piarepsilon_0 Mgl}{\sqrt{4L^2-l^2}}}=0,3\,$$
 мк
Кл.

Критерии оценивания

1. Показан рисунок с расстановкой всех сил	2 балла
2. Записано условие равновесия для тела	1 балл
3. Записано условие равновесия для шара	1 балл
4. Записаны уравнения для проекции сил	2 балла
5. Найдена сила Кулона	2 балла
6. Найден заряд на шариках	2 балла

4. В теплоизолированном сосуде находится 1 кг расплавленного свинца при температуре плавления ($T_1 = 600$ K). В сосуд бросают кусочек льда массой 100 г при температуре $T_2 = 0$ °C. Найти температуру в сосуде после установления теплового равновесия. В каком агрегатном состоянии будут свинец и вода? Теплоемкостью стенок сосуда пренебречь.

Удельная теплота плавления свинца $r_c = 2.4 \cdot 10^4$ Дж/кг, удельная теплоемкость свинца $C_c = 130$ Дж/(кг град), удельная теплоемкость воды $C_e = 130$ Дж/(кг град), удельная теплота плавления льда $r_n = 3.4 \cdot 10^5$ Дж/кг, удельная теплота парообразования воды $L_e = 2.3 \cdot 10^6$ Дж/кг.

Возможное решение

В процессе отвердевания свинца при температуре плавления выделяется количество теплоты

$$Q_1 = m_c r_c = 2.4 \cdot 10^4$$
Дж.

При остывании отвердевшего свинца от 600 K до 100°C его температура уменьшается на $\Delta T_1 = 600 - (100 + 273) = 227$ град. В этом процессе выделяется количество теплоты

$$Q_2 = m_c C_c \Delta T_1 = 3.0 \cdot 10^4 Дж.$$

При плавлении льда поглощается количество теплоты

$$Q_3 = m_{_{I\!\!I}} r_{_{I\!\!I}} = 3.4 \cdot 10^4 \, \text{Дж}.$$

При нагревании 100 г воды от 0 до 100°С ($\Delta T_2 = 100$ град) поглощается количество теплоты

$$Q_4 = m_{_{\mathcal{I}}} C_{_{\mathcal{B}}} \Delta T_2 = 4.2 \cdot 10^4 \,\text{Дж}.$$

Видно, что $Q_1 + Q_2 < Q_3 + Q_4$, т. е. количества теплоты, выделившегося при отвердевании свинца и остывании его до 100° С, достаточно, чтобы расплавить лед, но недостаточно, чтобы нагреть образовавшуюся воду до 100° С.

Из уравнения теплового баланса определим температуру системы $m_c r_c + m_c C_c (T_1 - T) = m_{_{\! /\! I}} r_{_{\! /\! I}} + m_{_{\! /\! I}} C_{_{\! /\! I}} (T - T_2),$ откуда

$$T = \frac{m_c(r_c + C_c T_1) - m_{\pi}(r_{\pi} - C_e T_2)}{m_c C_c + m_e C_e} = 332 \text{ K} = 59^{\circ}\text{C}.$$

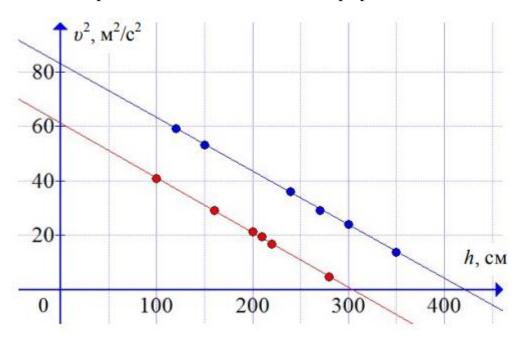
Свинец будет в твердом состоянии, вода – в жидком.

Критерии оценивания

- 1. Расчет количества выделившейся теплоты при отвердевании свинца и остывании до 100°C 2 балла
- 2. Расчет количества поглощенной теплоты при плавлении льда 2 балла
- 3. Расчет количества поглощенной теплоты при нагревании воды 2 балла
- 4. Уравнение теплового баланса записано правильно и определена температура системы: 2 балла
- 5. Определение агрегатного состояния свинца и воды выполнено правильно

2 балла

5. Псевдоэксперимент


- В баллистической лаборатории исследовались зависимости значений скоростей υ шариков, выпущенных вверх из небольшой катапульты, стоящей на столе, от высоты h их подъема над уровнем стола. К сожалению, в спешке в таблицу с результатами измерений попали данные для двух разных шариков.
- Определите, какие данные относятся к одному, а какие к другому шарику. Для этого постройте график с результатами измерений в таких координатах, в которых он должен быть линейным.
- Рассчитайте, во сколько раз отличаются максимальные высоты подъема шариков над столом.
- Определите времена полета шариков? Ускорение свободного падения $g = 9.8 \text{ M/c}^2$.

$N_{\underline{0}}$	1	2	3	4	5	6	7	8	9	10	11	12
h,	220	240	350	150	280	160	270	120	300	210	100	200
СМ												
υ,	4,1	6,0	3,7	7,3	2,2	5,4	5,5	7,7	4,9	4,4	6,4	4,6
м/с												

Возможное решение

Из закона сохранения энергии $\frac{mv_0^2}{2} = \frac{mv^2}{2} + mgh$ получаем $v^2 = v_0^2 - 2gh$, где v_0 - скорость на уровне стола. Следовательно, зависимость скорости от высоты будет линейной, например, в осях $v^2(h)$.

Нанесем экспериментальные точки на поле графика с осями v^2 и h.

Все точки хорошо разделяются, ложась на две прямые. Таким образом, одному шарику принадлежат точки:

№	1	2	3	4	5	6
<i>h</i> , см	120	150	240	270	300	350
υ, м/c	7,7	7,3	6,0	5,5	4,9	3,7

а другому:

No	1	2	3	4	5	6
<i>h</i> , см	100	160	200	210	220	280
υ, м/c	6,4	5,4	4,6	4,4	4,1	2,2

Прямые пересекают ось h в точках 310 см и 425 см. Это максимальные высоты подъема шариков. Времена полета шариков могут быть найдены, как

удвоенные времена падения без начальной скорости с максимальной высоты $t=2\sqrt{2h/g}$, и для одного шарика $t_1=1$,6 с, а для другого $t_2=1$,9 с.

Критерии оценивания

тритерии оденивания	
1. Теоретическое обоснование линейности зависимости υ 2 от h	2 балла
2. График	3 балла
• подписаны величины и единицы измерения на осях	1 балл
• оцифрованы деления через равные интервалы	1 балл
• верно нанесенные точки, соединенные гладкими линиями	1 балл
3. Определены максимальные высоты подъема (±5%)	2 балла
4. Выражение для определения времени падения	1 балл
5. Найдены времена полета (±5%)	2 балла