
ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ФИЗИКЕ (МУНИЦИПАЛЬНЫЙ ЭТАП)

возрастная группа (10 класс)

ЗАДАНИЕ 1.

Тележка длинной l катится по горизонтальной плоскости со скоростью u. По тележке туда-обратно вдоль направления движения от стенки к стенке с постоянной скоростью бегает щенок (рис.1.1.) На рисунке 1.2 представлен график зависимости смещения s щенка относительно земли от времени t, где t – время движения щенка от стенки до стенки тележки.

Определите, где в начальный момент времени находится щенок и найдите скорость движения щенка относительно тележки.

Решение.

Пусть скорость движения щенка относительно тележки v, тогда время движения щенка от стенки до стенки $\tau = \frac{l}{v}$.

Обозначим первый участок графика s_1 второй s_2 (рис. P1.), далее движение повторяется, длины повторяющихся участков одинаковы, следовательно в начальный момент времени щенок был у одной из стенок тележки.

Угол наклона графика на первом участке больше, чем на втором, значит, скорость щенка относительно земли в первом случае больше, т.е. сначала щенок бежит в направлении движения тележки, а потом против движения, то есть в начальный момент времени щенок был у левой стенки тележки. Скорость смещения щенка относительно земли на первом участке равна u + v, на втором соответственно равна u - v.

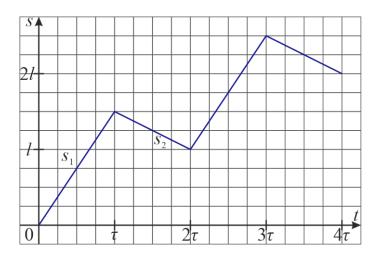


Рис. Р1.

Из графика видно, что смещение $s_1=1,5l$, смещение s_2 отрицательно и равно $s_2=-0,5l$, с другой стороны $s_1=(u+v)\tau=(u+v)\frac{l}{v}$ и $s_2=(u-v)\tau=(u-v)\frac{l}{v}$. Получили систему уравнений

$$\begin{cases} 1,5l = (u+v)\frac{l}{v}, \\ -0,5l = (u-v)\frac{l}{v}. \end{cases}$$
 (1)

Откуда получаем, что скорость щенка относительно тележки v=2u.

Критерии оценивания

1.	Найдена связь времени т со скоростью мышонка	1 балл
	относительно тележки	
2.	Показано, что щенок в начальный момент времени	2 балла
	находится у левой стенки тележки.	
3.	Верно определено по графику смещение на первом	1 балл
	участке	
4.	Верно определено по графику смещение на втором	1 балл
	участке	
5.	Получены соотношения (1)	4 балла
6.	Определено, что скорость щенка относительно тележки	1 балл
	равна 2и	
Bce	10 баллов	

ЗАДАНИЕ 2.

Три бруска массой m каждый лежат стопкой на гладкой горизонтальной плоскости (рис. 2). Верхний и нижний брусок соединены нитью, перекинутой через блок. С какой минимальной горизонтальной силой F нужно потянуть за средний брусок, чтобы он стал проскальзывать относительно верхнего и нижнего? Относительно только верхнего? Коэффициент трения между брусками μ .

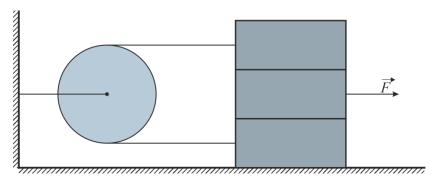


Рис. 2.

Решение.

- 1. Максимальная сила трения между верхним и средним брусками $F_{\text{тр1}} = \mu m g$, между средним и нижним $-F_{\text{тр2}} = 2 \mu m g$.
- 2. Если средний брусок проскальзывает относительно верхнего и нижнего, на бруски действуют горизонтальные силы, изображенные на рисунке Р2.

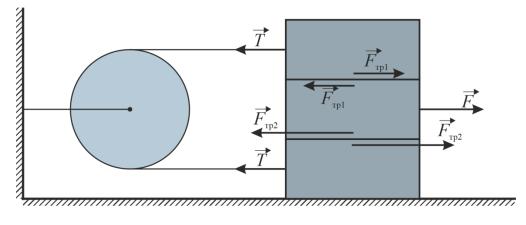


Рис. Р2.

При этом ускорения верхнего и нижнего бруска равны по модулю $a_1=a_2=a$, ускорение среднего бруска a_3 должно быть больше. Записывая Второй закон ньютона в проекции на горизонтальную ось, получим:

для верхнего бруска
$$T - \mu mg = ma$$
, (1)

для среднего бруска
$$F - 3\mu mg = ma_3 > ma$$
, (2)

для нижнего бруска
$$2\mu mg - T = ma$$
. (3)

Складывая (1) и (3), получим $\mu mg = 2ma$, $a = \frac{1}{2}\mu g$, тогда из (2)

$$F > 3\mu mg + ma$$
.

Итак, проскальзывание относительно верхнего и нижнего брусков будет при

$$F > \frac{7}{2}\mu mg. \tag{4}$$

3. При $F \leq \frac{7}{2} \mu mg$ средний брусок проскальзывает относительно верхнего, если система вообще движется (верхний брусок влево, средний и нижний вместе — вправо). Тогда получим

для верхнего бруска
$$T = \mu m g$$
, (5)

для среднего и нижнего брусков
$$F = \mu mg + T = 2\mu mg$$
. (6)

Итак, проскальзывание относительно только верхнего бруска будет при

$$\mu mg < F \le \frac{7}{2}\mu mg. \tag{7}$$

Критерии оценивания

1.	Определены силы трения действующие на бруски	1 балл
2.	2.1. Записан второй закон Ньютона в проекции на	3 балла
	горизонтальную ось для каждого бруска в случае	
	проскальзывания среднего бруска относительно верхнего	
	и нижнего (по 1 баллу за уравнение)	
	2.2. Определено минимальное значение силы F ,	2 балла
	уравнение (4)	
3.	3.1. Записан второй закон Ньютона в проекции на	2 балл
	горизонтальную ось для верхнего бруска и среднего и	
	нижнего вместе (по 1 баллу за уравнение)	
	3.2. Определены граничные значения для силы F ,	2 балла
	неравенство (7)	
Bce	10 баллов	

ЗАДАНИЕ 3.

Два нагревателя воды в первом случае включают в сеть напряжением 220 В, на которое они рассчитаны поочередно. При этом в каждом из них вода закипает за 15 минут. Мощность первого нагревателя 500 Вт, второго – 250 Вт. Если во втором случае соединить эти нагреватели последовательно и включить в туже сеть, то через какое время в каждом из них закипит вода?

Решение.

Из условия имеем $U=220\mathrm{B}$, номинальные мощности нагревателей $P_1^*=500~\mathrm{Bt}, P_2^*=250~\mathrm{Bt}, t=15~\mathrm{muh}.$

В первом случае оба нагревателя отдельно подключаются к одному и тому же напряжению. В нагревателях за время t выделяется

$$Q_1 = P_1^* t$$
, $Q_2 = P_2^* t$. (1)

При этом мощности равны $P_1^* = \frac{U^2}{R_1}$, $P_2^* = \frac{U^2}{R_2}$,

откуда

$$R_1 = \frac{U^2}{P_1^*}, \qquad R_2 = \frac{U^2}{P_2^*}.$$
 (2)

Во втором случае нагреватели соединены последовательно, напряжение на них разное, но ток один

$$I = \frac{U}{R_1 + R_2} \,. \tag{3}$$

Подставим значения сопротивлений из (2) в (3)

$$I = \frac{U}{\frac{U^2}{P_1^*} + \frac{U^2}{P_2^*}}, \qquad \Rightarrow \qquad I = \frac{P_1^* P_2^*}{U(P_1^* + P_2^*)}. \quad (4)$$

Количество теплоты, которое выделяется во второй ситуации на каждом нагревателе, такое же, как и в первой ситуации, но мощности другие время работы другое $Q_1=P_1t_1$, $Q_2=P_2t_2$,

откуда

$$t_1 = \frac{Q_1}{P_1}, \quad t_1 = \frac{Q_2}{P_2}.$$
 (5)

При этом мощности $P_1 = I^2 R_1$, $P_2 = I^2 R_2$.

Тогда с учетом, формул (2) и (4), имеем

$$P_{1} = \frac{P_{1}^{*2}P_{2}^{*2}}{U^{2}(P_{1}^{*} + P_{2}^{*})^{2}} \frac{U^{2}}{P_{1}^{*}}, \qquad P_{2} = \frac{P_{1}^{*2}P_{2}^{*2}}{U^{2}(P_{1}^{*} + P_{2}^{*})^{2}} \frac{U^{2}}{P_{2}^{*}}, \Rightarrow$$

$$P_{1} = \frac{P_{1}^{*}P_{2}^{*2}}{(P_{1}^{*} + P_{2}^{*})^{2}}, \quad P_{2} = \frac{P_{1}^{*2}P_{2}^{*}}{(P_{1}^{*} + P_{2}^{*})^{2}}. \quad (6)$$

Тогда из (5) с учетом (1) и (6) имеем

$$t_1 = \frac{(P_1^* + P_2^*)^2}{{P_2^*}^2} t$$
, $t_2 = \frac{(P_1^* + P_2^*)^2}{{P_1^*}^2} t$.

Окончательно $t_1 = 135$ мин, $t_2 = 33,75$ мин.

Критерии оценивания

1.	Получены соотношения для количества теплоты в первом	1 балл
	случае	
2.	Получены соотношения для номинальных мощностей в	1 балл
	первом случае	
3.	Определены сопротивления нагревателей	1 балл
4.	Получены соотношения для количества теплоты во	1 балл
	втором случае	
5.	Получены соотношения для мощностей во втором случае	1 балл
6.	Определено значение силы тока во втором случае (или	1 балл
	значения напряжений на каждом нагревателе)	
7.	Получены выражения для P_1 и P_1 через P_1^* , P_2^* и U	1 балл
8.	Получены выражения для времени t_1 и t_2	2 балла
9.	Получены верные значения времени t_1 и t_2	1 балл
Bce	10 баллов	

ЗАДАНИЕ 4.

Для определения показателя преломления жидкости в нее поместили тонкую прозрачную сферу. На сферу направили тонкий параллельный пучок лучей света. На противоположной стороне сферы площадь освещенной поверхность в четыре раза отличается от площади поверхности освещенной в месте падения пучка. Определите показатель *п* преломления жидкости. Диаметр падающего пучка много меньше диаметра сферы.

Решение.

Так как показатель преломления воздуха n_0 меньше показателя преломления n любой жидкости, то площадь S_2 освещенной поверхности от выходящего пучка может быть только в четыре раза больше, а не меньше площади освещенной падающим пучком S_1 .

Площадь пропорциональна квадрату радиуса, значит радиус R_2 выходящего пучка в два раза больше радиуса R_1 падающего пучка, т.е.

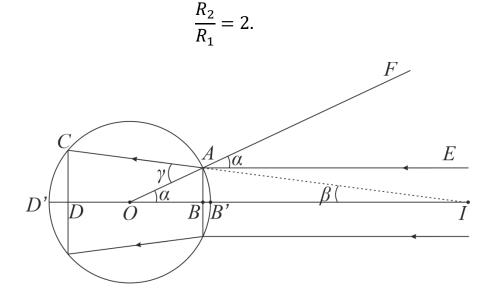


Рис. Р4.

На чертеже (Рис. Р4) $AB=R_1$, $CD=R_2=2R_1=2AB$, $\angle EAF=\angle FOB=\alpha$, $\angle CAO=\gamma$,

$$\frac{n_0}{n} = \frac{\sin \alpha}{\sin \gamma}.$$
 (1)

Радиус падающего пучка R_1 много меньше радиуса сферы R, это позволяет:

- а) считать точку B совпадающей с точкой B', а точку D- с точкой D', при этом $DB \approx D'B' = 2R$, а так как CD = 2AB, то из подобия прямоугольных треугольников $\Delta CID \sim \Delta AIB$, имеем B'I = 2R;
 - б) измерять углы α и β следующим образом:

$$\alpha \approx tg\alpha \approx \frac{AB}{OB} \approx \frac{R_1}{R}, \qquad \beta \approx tg\beta \approx \frac{CD'}{D'I} \approx \frac{R_2}{4R} = \frac{2R_1}{4R} = \frac{\alpha}{2},$$

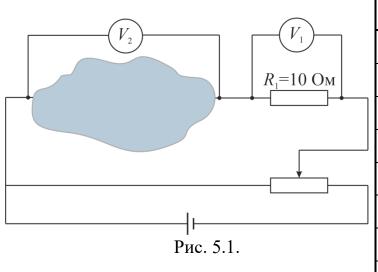
тогда угол γ как внешний для ΔOAI , можно найти из выражения

$$\gamma = \alpha + \beta = \frac{3\alpha}{2};$$

в) заменить в соотношении (1) синусы углов значениями самих углов.

Тогда получаем

$$n = n_0 \frac{\sin \gamma}{\sin \alpha} \approx n_0 \frac{\gamma}{\alpha} = \frac{3}{2}.$$


Критерии оценивания

1.	Определено, что $\frac{R_2}{R_1} = 2$ или (соотношение для диаметров	1 балл
	пучков)	
2.	Верно записан закон преломления света	1 балл
3.	Построен верный чертеж	3 балла
4.	Выполнен пункт а) или аналогичные рассуждения	2 балла
5.	Выполнен пункт б) или аналогичные рассуждения	2 балла
6.	Выполнен пункт в) и получен верный ответ	1 балл
Bce	10 баллов	

ЗАДАНИЕ 5.

В заметках экспериментатора обнаружилась схема (рис. 5.1) и результаты измерений к ней, представленные в таблице 1.

Таблица 1.

			1
U_1 , мВ	U_2 , B	U_1 , м B	U_2 , B
2,5	1	-9,3	-4,2
3,0	1,1	-7,8	-3,5
3,5	1,2	-6,2	-2,8
4,5	1,3	-4,9	-2,2
6,8	1,5	-3,5	-1,6
10,5	1,7	-3,1	-1,4
17,9	2,1	-1,8	-0,8
38,3	3,2	-1,1	-0,5
56,8	4,2	-0,7	-0,3

Чертеж был поврежден, на одном участке была клякса. Но экспериментатор вспомнил, что в нем находилось не более трех элементов, и это могли быть резисторы, диоды, лампочки, но только один из элементов в схеме нелинейный.

Вольт-амперные характеристики нелинейных элементов схематически представлены на рисунке 5.2.

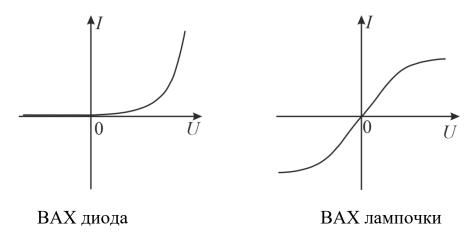


Рис. 5.2.

Задание.

- 1) Изобразите вольт-амперную характеристику для утраченного участка цепи на графике (миллиметровая бумага для графика Приложение 1 сдается вместе с работой).
- 2) Объясните, какой нелинейный элемент находится на участке цепи под кляксой.
- 3) Предложите и обоснуйте все возможные варианты схемы электрической цепи, которая находится под кляксой.
 - 4) Определите сопротивление(я) резистора(ов) в схеме под кляксой.

Решение.

1) Силу тока через участок цепи под кляксой найдем из закона Ома для резистора R_1 , так как участки соединены последовательно,

$$I = \frac{U_1}{R_1}.$$

Результаты представлены в таблице.

№ пп	$\pmb{U_1}$, мВ	$\boldsymbol{U_2}$, B	<i>I</i> , м <i>A</i>	№ пп	$oldsymbol{U_1}$, мВ	$oldsymbol{U_2}$, B	<i>I</i> , м <i>A</i>
1.	-9,3	-4,2	-0,93	10.	2,5	1	0,25
2.	-7,8	-3,5	-0,78	11.	3,0	1,1	0,3
3.	-6,2	-2,8	-0,62	12.	3,5	1,2	0,35
4.	-4,9	-2,2	-0,49	13.	4,5	1,3	0,45
5.	-3,5	-1,6	-0,35	14.	6,8	1,5	0,68
6.	-3,1	-1,4	-0,31	15.	10,5	1,7	1,05
7.	-1,8	-0,8	-0,18	16.	17,9	2,1	1,79
8.	-1,1	-0,5	-0,11	17.	38,3	3,2	3,83
9.	-0,7	-0,3	-0,07	18.	56,8	4,2	5,68

Вольт-амперная характеристика схемы под кляксой представлена на рис. Р5.1.

- 2) Характерный изгиб BAX и разный вид графика при различной полярности говорят о наличии диода.
- 3) Ветвь для отрицательных напряжений соответствует закрытому состоянию диода. Поскольку ток при этом течет и зависимость $I(U_1)$ линейна, делаем вывод, о том, что параллельно, диоду присоединен резистор.

Правая ветвь ВАХ после открытия диода идет не слишком круто, что свидетельствует о наличие резистора, соединенного последовательно с диодом.

Возможные варианты схем под кляксой представлены на рисунке Р5.2.

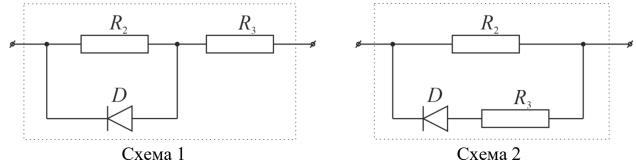


Рис. Р5.2.

- 4) Из графика обратные наклоны прямолинейных участков
 - участок $AO R_{AO} = 4,5$ кОм;
 - участок $BC R_{BC} = 0,54$ кОм.

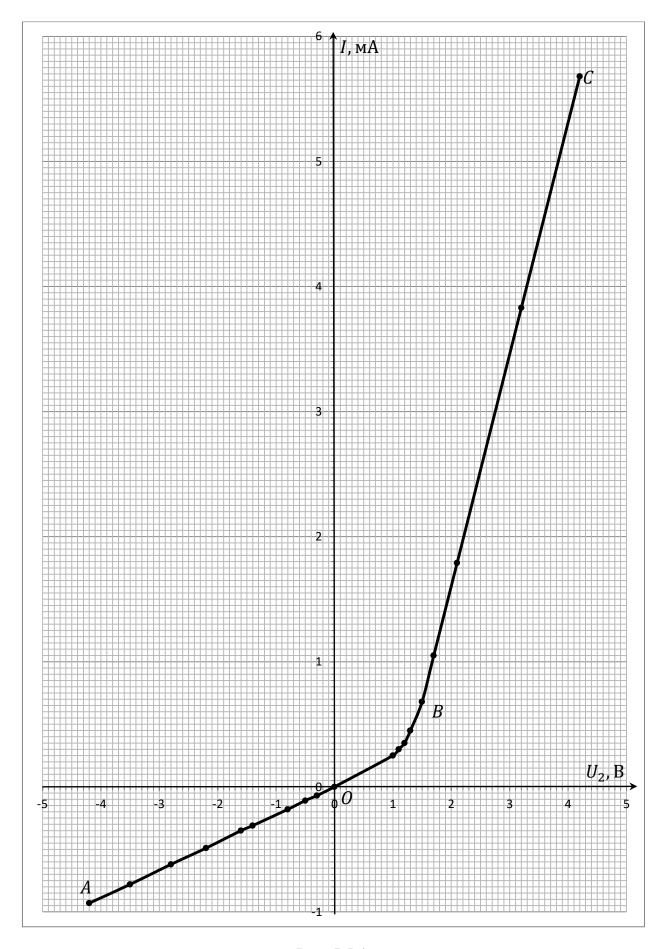


Рис. Р5.1.

Для схемы 1.

При U>0 (участок BC), диод открыт, ток через резистор R_2 не идет, поэтому отношение $\frac{\Delta U_2}{\Delta I}=R_{BC}=R_3$, откуда $R_3=0.54$ кОм.

При U<0 (участок AO) ток через диод не идет, поэтому общее сопротивление цепи $R_{AO}=R_2+R_3$, откуда $R_2=R_{AO}-R_3=4,5$ кОм -0,54 кОм =3,96кОм.

Для схемы 2.

При U<0 (участок AO) ток через диод не идет, $\frac{\Delta U_2}{\Delta I}=R_{AO}=R_2$, откуда $R_2=4$,5 кОм

При U>0 (участок BC), диод открыт, имеем $R_{BC}=\frac{R_2R_3}{R_2+R_3}$, откуда $R_3=\frac{R_2R_{BC}}{R_2-R_{BC}}=\frac{4,5\ \text{кОм}\cdot 0,54\ \text{кОм}}{4,5\ \text{кОм}-0,54\ \text{кОм}}=0,61\ \text{кОМ}.$

Таким образом имеем.

	Схема 1	Схема 2
R_2 , к 0 м	3,96кОм	4,5 кОм
<i>R</i> ₃ , кОм	0,54 кОм	0,61 кОМ

Критерии оценивания

1.	Верно построен график зависимости I от U_2 .	3 балла
	1.1. Рассчитаны необходимые данные для построения (1	
	балл);	
	1.2. Оси подписаны и отложены единицы измерения по	
	осям (0,5 балла);	
	1.3. Выбран рациональный масштаб по осям (0,5 балла);	
	1.4. Нанесены шкалы на оси (0,5 балла);	
	1.5. Соответствие точек, нанесённых на график,	
	табличным значениям, проведена линия $I(U_2)$ (0,5 балла).	
2.	Верно определен нелинейный элемент	1 балл
3.	Приведены две возможные схемы (по 1 баллу за схему)	2 балла
4.	Верно определены сопротивления R_2 и R_3 для каждой	4 балла
	схемы (по 1 баллу за сопротивление в схеме).	
Bcei	TO	10 баллов