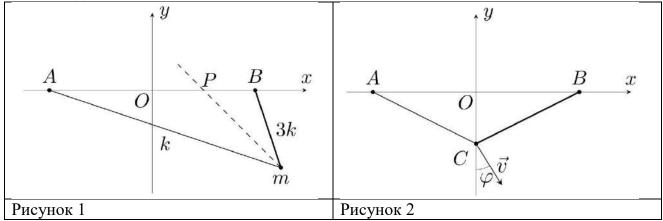
Муниципальный этап всероссийской олимпиады школьников по физике. 2024/25 учебный год. 11 класс. Максимальный балл – 50.



Тело массы m может двигаться по гладкой горизонтальной плоскости, на которой введены декартовы координаты Oxy. Изначально оно удерживается двумя резиновыми жгутами жёсткости k и 3k, свободные концы которых прикреплены к точкам A(-l,0) и B(l,0). Длина жгутов в нерастянутом состоянии пренебрежимо мала по сравнению с l, т.е. натяжение жгутов всегда пропорционально их длине. Со стороны жгутов на тело действует результирующая упругая сила, точку пересечения её линии с осью Ox обозначим за P (рисунок 1).

Вопрос №1

Пусть тело находится в точке с координатами (x,y). Определите выражение для потенциальной энергии жгутов.

Вопрос №2

Найдите координаты точки P, если тело находится в точке с координатами (x,y).

Вопрос №3

Тело поместили в точку C(0, -l/2). Какую скорость \vec{v} и под каким углом ϕ (см. рисунок 2) нужно сообщить телу, чтобы его дальнейшее движение происходило по окружности?

Возможное решение.

Вопрос №1:

Длина жгута жёсткости k находится как $l_1 = \sqrt{(x+l)^2 + y^2}$ Аналогично длина жгута жёсткости 3k: $l_2 = \sqrt{(x-l)^2 + y^2}$

$$W = \frac{kl_1^2}{2} + \frac{3kl_2^2}{2} = \frac{k}{2}((x+l)^2 + y^2 + 3(x-l)^2 + 3y^2)$$

$$W = \frac{k}{2}(4x^2 - 4xl + 4l^2 + 4y^2) = 2k\left(\left(x - \frac{l}{2}\right)^2 + y^2 + \frac{3}{4}l^2\right) = 2k\left(r^2 + \frac{3}{4}l^2\right)$$

Видно, что точки с одинаковым значением энергии представляют собой концентрические окружности с центром $X\left(\frac{l}{2},0\right)$.

Вопрос №2:

В рамках предложенной задачи действующая сила не зависит от скорости, с которой движется тело, поэтому можем рассмотреть случай изначального покоя массы m.

В силу радиальной симметрии уровней энергии тело начнёт движение к точке X, она же и будет искомой точкой P: $P\left(\frac{l}{2},0\right)$.

Альтернативный способ

Силу, действующую на тело, можно найти как векторную сумму двух сил. Запишем координаты результирующей силы: $(k(-l-x)+3k(l-x);-ky-3ky)=k*(2l-4x;-4y)=4k*\left(\frac{l}{2}-x;-y\right)=4k*\left(\left(\frac{l}{2};0\right)-(x;y)\right)$, т.е. результирующая сила всегда направлена из точки (x;y) в точку $\left(\frac{l}{2};0\right)$.

Вопрос №3:

В случае центральной силы (всегда направленной в одну точку) движение по окружности возможно только в случае постоянной скорости. Сила при этом обеспечивает центростремительное ускорение. Для выполнения условий задачи нужно запустить тело по окружности уровня энергии, проходящей через точку C, т.е. $r = PC = \frac{l}{\sqrt{2}}$

Это значит, что \vec{v} должен быть направлен по касательной к этой окружности, т.е. $\vec{v} \perp \overrightarrow{PC}$.

$$\angle OCP = 45^{\circ}$$

$$\varphi = 180^{\circ} - \angle OCP - 90^{\circ} = 45^{\circ}$$

Сила F должна быть центростремительной, т.е.

$$F = \frac{mv^2}{r} = 4kr$$

$$v = \sqrt{\frac{4kr^2}{m}} = \sqrt{\frac{2kl^2}{m}} = l\sqrt{\frac{2k}{m}}$$

Критерии оценивания

притерии оценивания						
№	Критерий	Кол-во баллов				
1	Записана потенциальная энергия растянутого жгута.	0,5				
2	Other 1: $W = 2k\left(\left(x - \frac{l}{2}\right)^2 + y^2 + \frac{3}{4}l^2\right)$	1				
3	Описан верный алгоритм нахождения точки P : либо «в лоб», либо с использованием симметрии	1,5				
4	Otbet 2: $P\left(\frac{l}{2},0\right)$	1				
5	Идея запустить тело по окружности с постоянным значением потенциальной энергии жгутов.	2				
6	Определён радиус такой окружности $r=\frac{l}{\sqrt{2}}$	0,5				
7	Определена центростремительная сила $F = 4kr$	1				

8	Otbet 3.1: $v = l\sqrt{\frac{2k}{m}}$	1,5
9	Ответ 3.2: $\varphi = 45^{\circ}$	1
	Итого	10

Задача №2

Вокруг Земли летает МКС. Воздух внутри находится в тепловом равновесии при давлении $10^5\Pi a$, температуре 300~K и состоит только из азота (28~r/моль) и кислорода (32~r/моль). Быстро летящий космический мусор проделывает в корпусе микроотверстие диаметром 10^{-8} м.

<u>Вопрос №1</u>: Определите отношение количества вылетающих в единицу времени молекул азота и кислорода, если внутри МКС это отношение равно 4:1.

<u>Вопрос №2</u>: Оцените полное количество молекул вылетевших из отверстия за 1 час.

Вопрос №3: Оцените силу, действующую на МКС, за счёт вылетающих молекул.

Отверстие мало по сравнению с длиной свободного пробега молекул. Изменением концентрации газов внутри МКС пренебречь. Постоянная Авогадро $Na = 6.02*10^{23}$ (моль)⁻¹, универсальная газовая постоянная -R = 8.31 Дж/(моль К).

Возможное решение.

Вопрос №1

Количество вылетевших из отверстия молекул равно числу молекул, ударяющихся об участок стенки такой же площади. Искомое число молекул пропорционально концентрации газа и скорости его частиц. При тепловом равновесии частицы газов имеют одинаковые средние энергии поступательного движения, тогда среднеквадратичная скорость $v_{\rm CK} = \sqrt{\frac{3kT}{m_0}} = \sqrt{\frac{3RT}{\mu}}$, т.е. пропорциональна $\frac{1}{\sqrt{\mu}}$. Итого: $\frac{\Delta N_{N_2}}{\Delta N_{O_2}} = \frac{n_{N_2}}{n_{O_2}} * \frac{v_{N_2}}{v_{O_2}} = \frac{n_{N_2}}{n_{O_2}} * \sqrt{\frac{\mu_{O_2}}{\mu_{N_2}}} = \frac{4}{1} * \sqrt{\frac{32}{28}} = 4,28$

Вопрос №2

Количество молекул, вылетевших в секунду через малое отверстие, можно вычислить из соотношения*: $\frac{\Delta N}{\Delta t} = \frac{nSv_{\rm CK}}{4}$, где $n = \frac{P}{kT} = 0,242*10^{26}~{\rm M}^{-3}$ – концентрация частиц, $S = \frac{\pi D^2}{4} = 0,785*10^{-16}~{\rm M}^2$ – площадь отверстия, $v_{\rm CK} = \sqrt{\frac{3kT}{m_0}} = \sqrt{\frac{3RT}{\mu}}$ - среднеквадратичная скорость частиц** (517 м/с – азот, 483 м/с– кислород). Количество вылетевших частиц за время t=3600 с посчитаем так**: $N = \frac{\Delta N}{\Delta t}*t = t*$ $\left(\frac{n_1Sv_1}{4} + \frac{n_2Sv_2}{4}\right) = \frac{nSt}{4}*\left(\frac{4v_1}{5} + \frac{v_2}{5}\right) = 8.7*10^{14}$ частиц.

- * В формуле для количества молекул вместо коэффициента 1/4 допускается коэффициент 1/6.
 - ** Для вычислений можно брать среднюю молярную массу воздуха 29 г/моль.

Вопрос №3:

$$F = \frac{\Delta P}{\Delta t} = p_0 \frac{\Delta N}{\Delta t} = m_0 v_{\text{CK}} * \frac{nSv_{\text{CK}}}{4} = m_0 * \sqrt{\frac{3kT}{m_0}} * \frac{1}{4} * \frac{P}{kT} * \frac{\pi D^2}{4} * \sqrt{\frac{3kT}{m_0}} = \frac{3P\pi D^2}{16} = 5.9 * 10^{-12} \text{ H}.$$

Критерии оценивания.

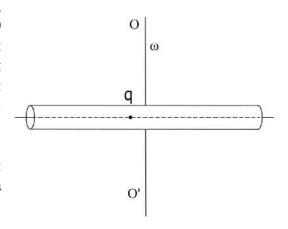
	критерии оценивания.	
№	Критерий	Кол-во баллов
1	Количество вылетевших молекул пропорционально концентрации	1
2	Количество вылетевших молекул пропорционально скорости	1
3	Формула среднеквадратичной скорости	1
4	Численный ответ (4,3 раза)	1
5	Количество молекул, вылетающих в секунду через отверстие - с численным коэффициентом 1/4 или 1/6 – 2 балла - с численным коэффициентом 1 - 1 балл	2
6	Конечная формула в вопросе 2 (полный набор формул оценивается в полный балл)	1
7	Численный ответ для числа частиц - оценивается попадание в порядок 10 ¹⁴ - 10 ¹⁵ частиц	1
8	Вывод формулы для силы	1
9	Численный ответ - оценивается попадание в порядок 10 ⁻¹¹ - 10 ⁻¹² Н	1
	Итого	10

Задача № 3

Тонкая диэлектрическая трубка радиуса R, длины L ($R \ll L$), и поверхностным зарядом $\sigma > 0$ вращается вокруг оси OO, перпендикулярной оси трубки и проходящей через ее центр. По оси трубки не касаясь ее может перемещаться маленький шарик с зарядом q < 0 и массой m (см. рисунок).

Вопрос №1

Найдите силу взаимодействия трубки и шарика, если он смещен от оси вращения на небольшое расстояние x ($x \ll L$).



Вопрос №2

До какой угловой скорости нужно раскрутить трубку, чтобы шарик начал смещаться из центра?

Вопрос №3

Найдите силу взаимодействия трубки и шарика, если он располагается у края (на торце) трубки.

Вопрос №4

С какой угловой скоростью ω надо вращать трубку, чтобы заряд был

неподвижен относительно нее и располагался у края (на торце) трубки?

Возможное решение Вопрос №1

При смещении заряда от центра (как на рисунке) правая часть трубки длиной (L/2-x) и левая часть трубки длиной (L/2-x), расположенные симметрично относительно шарика, вместе дают нулевую силу. Нескомпенсированная сила появляется от участка длиной 2x, расположенного у правого края трубки. Этот заряд можно считать точечным. Он находится на расстоянии L/2 от q. Получаем силу:

$$F = k \frac{2\pi R\sigma \ 2x \ q}{(L/2)^2} = k \frac{16\pi R\sigma x \ q}{L^2}$$

Вопрос №2

При небольшом смещении от центра шарик вращается по окружности радиуса x, значит его ускорение $\omega^2 x$. Перейдем во вращающуюся СО. На шарик действует электростатическая сила и сила инерции сила. Результирующая возвращающая сила равна

$$F = k \frac{16\pi R \sigma x \, q}{L^2} - m\omega^2 x$$

Находим, что при угловых скоростях меньших $\omega_0=4\sqrt{\frac{\pi kRq\sigma}{mL^2}}$ суммарная сила — направлена к центру (возвращающая). При больших скоростях результирующая сила направлена от центра. Значит ω_0 - это искомый ответ.

Вопрос №3

Воспользуемся методом виртуальных перемещений. Пусть заряд находится у левого края трубки. Перемещение заряда на маленькое расстояние Δx в сторону центра трубки ($\Delta x \ll R$) эквивалентно перемещению маленького колечка трубки толщиной Δx с правого конца на левый конец (право и лево как на рисунке). Тогда совершенная силой F работа равна минус изменению энергии взаимодействия заряда и трубки:

From
$$\Delta x = -\Delta W$$

$$F\Delta x = -\left(k \frac{2\pi R\sigma \Delta x \ q}{R} - k \frac{2\pi R\sigma \Delta x \ q}{L}\right)$$
Corporation to Δx , Holymore therefore

Сокращая на Δx , получаем формулу для силы F:

$$F = 2\pi kq\sigma \left(1 - \frac{R}{L}\right) \approx 2\pi kq\sigma$$

Вопрос №4

В состоянии равновесия заряд вращается по окружности радиуса $\frac{L}{2}$, значит его ускорение $\omega^2 \frac{L}{2}$. Второй закон Ньютона будет выглядеть так:

$$m\omega^2 \frac{L}{2} = 2\pi kq\sigma \left(1 - \frac{R}{L}\right)$$

Отсюда выражаем ω :

$$\omega = 2\sqrt{\frac{\pi kq\sigma}{mL^2}(L-R)} \approx 2\sqrt{\frac{\pi kq\sigma}{mL}}$$

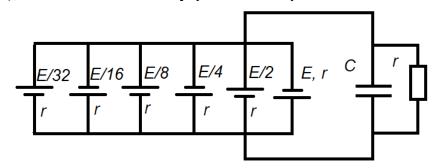
Критерии оценивания

№	Критерий	Кол-во баллов
	Вопрос №1	
1	Предложено рассматривать только некомпенсированный заряд	1
2	Ответ на первый вопрос $F = k \frac{16\pi R \sigma x \ q}{L^2})$	1
	Вопрос №2	
3	Записан закон Ньютона или выражение для возвращающей силы	1
	Найдено значение критической угловой скорости	
4	$\omega_0=4\sqrt{rac{\pi kRq\sigma}{mL^2}}$	1
5	Сделан правильный вывод об потери устойчивости равновесия	1
	Вопрос №3	
6	Предложен метод виртуальных перемещений	1
	Выражено изменение энергии взаимодействия	
7	$\Delta W = -\left(k \frac{2\pi R\sigma \Delta x q}{R} - k \frac{2\pi R\sigma \Delta x q}{H}\right)$	1
8	Получен правильный ответ	2
	$F = 2\pi kq\sigma \left(1 - \frac{R}{H}\right) \approx 2\pi kq\sigma$	
	Вопрос №4	
	Правильно выражена ω:	
9	$\omega = 2\sqrt{\frac{\pi kq\sigma}{mH^2}(H-R)} \approx 2\sqrt{\frac{\pi kq\sigma}{mH}}$	1
	Итого	10

При правильном решении другим методом (например, интегрированием) ставить полный балл за вопрос задачи.

Задача №4

Талгат нашел множество разных источников и решил с ними поэкспериментировать. Он составил батарею из 6 источников с разными ЭДС (см. рисунок), но с одинаковыми внутренними сопротивлениями r.



Вопрос № 1

Какой заряд будет на обкладках конденсатора емкостью C, присоединенного через такое же сопротивление r к этой батарее, спустя достаточно большой промежуток времени?

Вопрос № 2

От схемы быстро отключили резистор r и пять источников. Оставили только конденсатор и источник с ЭДС E. Какое количество теплоты выделится в оставшейся цепи через достаточно продолжительное время?

Примечание: каждое следующее ЭДС вдвое меньше предыдущего и противоположно ориентировано.

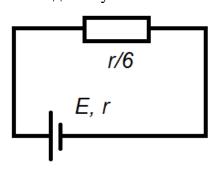
Возможное решение

Допускается решение непосредственно через правила Кирхгофа, с помощью эквивалентного источника и т.п.

Вопрос № 1

Решим задачу методом наложения. Для этого рассмотрим первый источник питания, а остальные заменим перемычками. В установившейся ситуации через конденсатор ток не течет, в связи с чем его можно временно убрать из схемы.

Тогда получим эквивалентную схему:



Ток, текущий через источник в этом случае $I_1 = \frac{6E}{7r}$, а через каждое из параллельно соединенных сопротивлений r (в том числе и через то, которое соединены параллельно конденсатору) идет ток $I_1/6$.

Аналогичные размышления для остальных источников позволяют сделать следующий вывод:

$$I_2 = \frac{6}{7r} \cdot \frac{E}{2}, I_3 = \frac{6}{7r} \cdot \frac{E}{4}, I_4 = \frac{6}{7r} \cdot \frac{E}{8}, I_5 = \frac{6}{7r}$$

$$\frac{E}{16}, I_6 = \frac{6}{7r} \cdot \frac{E}{32}.$$

Нечетные токи текут в одну сторону, четные — в другую. В результате наложения получим, что через резистор r, соединенный параллельно конденсатору, в установившемся режиме течет ток:

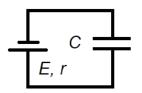
$$I = \frac{I_1}{6} - \frac{I_2}{6} + \frac{\bar{I}_3}{6} - \frac{I_4}{6} + \frac{I_5}{6} - \frac{I_6}{6} = \frac{E}{7r} \left(1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \frac{1}{32} \right) = \frac{21}{32} \cdot \frac{E}{7r} = \frac{3E}{32r}.$$

Конденсатор соединен параллельно резистору r, поэтому напряжение на конденсаторе равно напряжению на резисторе, тогда q = CU = CIr = 3CE/32.

Энергия конденсатора $W_1 = q^2/2C = 9CE^2/2048$.

Вопрос № 2

После того, как мы отключили резистор и все источники, кроме E, через некоторое время будет новое установившееся состояние, в котором заряд конденсатора будет q_2 . Конденсатор будет заряжаться до тех пор, пока напряжение на нем не станет равно E. Полярность зарядки конденсатора не изменится.



Заряд на конденсаторе $q_2 = CE$, энергия на конденсаторе $W_2 = CE^2/2$.

Запишем связь работы источника тока с изменением энергии и количеством теплоты:

 $A = \Delta W + Q$, где A — работа источника тока, Q — количество теплоты, выделившееся в цепи.

$$\Delta q \cdot E = W_2 - W_1 + Q$$
, $\Delta q = CE - 3CE/32 = 29CE/32$.

$$Q = \Delta q \cdot E - W_2 + W_1 = 29CE^2/32 - CE^2/2 + 9CE^2/2048 = 841CE^2/2048.$$

Это количество теплоты и будет выделяться на внутреннем сопротивлении источника, если мы считаем сопротивление соединительных проводов пренебрежимо малым

Критерии оценивания

№	Критерий	Кол-во баллов
1	Записаны уравнения, позволяющие определить силу тока, текущего через резистор r (любым способом).	1
2	Верно получена сила тока $I = \frac{3E}{32r}$, текущего через резистор г	2
3	Найден ответ на первый вопрос	1
4	Записана энергия в начале	1
5	Найден заряд на конденсаторе в конце процесса	1
6	Записана энергия в конце	1
7	Верно записана связь работы источника тока с изменением энергии и	1
	количеством теплоты (закон сохранения энергии)	
8	Найдено количество теплоты	2
	Итого	10

Задача №5

Закона Менделеева – Клапейрона хорошо описывает состояния идеальных газов:

$$PV = vRT$$

где R - универсальная газовая постоянная, T - абсолютная температура, P - давление, V - объем, υ - количество вещества. В случае, когда размером частиц или взаимодействием между ними нельзя пренебречь, состояния системы лучше описывается уравнением Ван-дер-Ваальса:

$$(P + \frac{a \cdot v^2}{V^2})(V - b \cdot v) = vRT$$

где a, b - некоторые постоянные, зависящие от вещества. Уравнение Ван-дер-Ваальса позволяет описать превращение газа в жидкость, а также объяснить существование критической температуры - температуры, выше которой переход газа в жидкость не происходит при любом увеличении давления.

В таблице представлена зависимость давления от объема для некоторого реального вещества в количестве ν моль при постоянной температуре $25,0^{0}$ C.

1				1	1 71 - 7 -				
Р, атм	10	11	12	13	14	15	16	17	18
V, см ³	19,06	17,04	15,37	14,11	12,75	11,66	10,80	9,98	9,26
Р, атм	19	20	21	22	23	24	25	26	27
V, см ³	8,60	7,98	7,44	6,92	6,36	5,87	2,20	1,70	1,57
Р, атм	28	29	30	32	34	36	38	41	45
V, cm ³	1,52	1,49	1,48	1,44	1,41	1,39	1,37	1,34	1,30

В ходе эксперимента выяснилось, что при измерении объема была допущена систематическая ошибка ΔV (все измерения сдвинуты на одинаковую величину), Давление было измерено точно. 1атм = 10^5 Па.

Вопрос № 1

Определите давление насыщенного пара вещества при данной температуре.

Вопрос № 2

Постройте график зависимости в координатах $\frac{1}{p}(V)$.

Вопрос № 3

С помощью графика определите количество вещества, используемое в опыте.

Вопрос № 4

C помощью графика определите систематическую ошибку в измерении объема ΔV .

Вопрос № 5

С помощью графика оцените величину b в уравнении Ван-дер-Ваальса.

Вопрос № 6

Оцените линейный размер молекулы вещества.

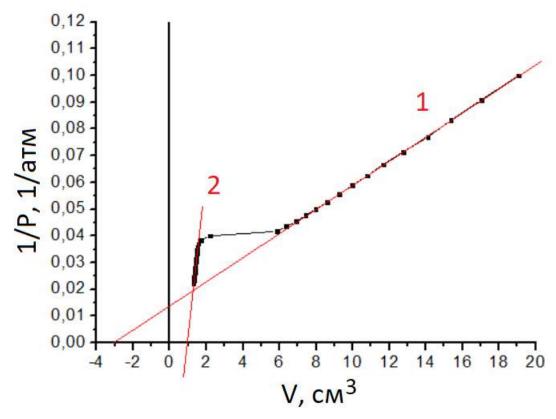
Возможное решение:

Вопрос № 1

Давление насыщенного пара можно определить анализируя представленные данные (находим давление, при котором резко уменьшается объём). Получаем, что $p_{\text{hac}} \approx 25$ атм.

Вопрос № 2

Построим график в координатах $\frac{1}{P}(V)$.



Вопрос № 3

Линейный участок 1 этого графика соответствует ситуации, когда газ удовлетворяет уравнению Менделеева - Клапейрона (большой объем, малое давление), т.е. $\frac{1}{P} = \frac{V}{vRT}$. Угловой коэффициент этого участка $k = \frac{1}{vRT}$ позволяет найти количество вещества:

$$\nu = \frac{1}{kRT} = \frac{1}{0.045 \cdot 8.31 \cdot 298} \approx 8.9 \cdot 10^{-3}$$
 моль.

Можно заметить, что систематическая ошибка в определении объема не влияет на полученный результат.

Вопрос № 4

Для идеального газа изотерма в координатах $\frac{1}{p}(V)$ является прямой, продолжение которой проходит через начало координат. В нашем случае продолжение линейного участка пересекает ось не в точке $V=0~{\rm cm}^3$. Это позволяет найти систематическую ошибку измерения объёма $\Delta V = -3$ см³.

Вопрос № 5

Для участка 2 воспользуемся уравнением Ван-дер-Ваальса. Для больших давлений слагаемым $\frac{av^2}{V^2}$ можно пренебречь, т.к. V > bv, т.е. V не обращается в 0. Уравнение Ван-дер-Ваальса принимает вид:

$$\frac{1}{P} = \frac{(V-bv)}{vRT}$$
 - линейная зависимость.

 $\frac{1}{P} = \frac{1}{VRT}$ - линейная зависимость. Эта прямая пересекает ось 0-V в точке с координатой bv. Учтем систематическую ошибку в измерении объема.

Получаем:
$$b = \frac{(1-(-3)) \text{ см}^3}{v} \approx 0,45 \cdot 10^{-3} \text{ м}^3/\text{моль}.$$

* Можно заметить, что уравнение Ван-дер-Ваальса не дает полного описания изотермы реальной жидкости, т.к. в теории угловой коэффициент линейной зависимости 2 должен совпадать с угловым коэффициентом для зависимости 1 ($k=\frac{1}{v_{RT}}$). Этого не наблюдается.

Вопрос № 6

Найденный коэффициент b - это объем одного моля вещества для плотного расположения молекул (при бесконечном давлении). Следовательно размер молекулы:

$$d = \sqrt[3]{\frac{b}{N_a}} = \sqrt[3]{\frac{0,449 \cdot 10^{-3}}{6,02 \cdot 10^{23}}} = 0,91 \cdot 10^{-9} \text{M}.$$

Критерии оценивания.

	критерии оценивания.						
№	Критерий	Кол-во баллов					
1	Определите давление насыщенного пара для вещества, используемого в опыте $P = (24 - 26)$ атм.	1					
2	Качество построения графика	2					
	• Подписаны и грамотно оцифрованы оси (1 балл)						
	• Правильно поставлены экспериментальные точки (0,5 балла)						
	• Проведена сглаживающая кривая (0,5 балла)						
3	Идея определения количества вещества по наклону графика $\frac{1}{2}(V)$	1					
	для больших объемов						
4	Верно найдено количество вещества $v = (8,5-9,5)\cdot 10^{-3}$ моль	1					
5	Идея определения ошибки измерений ΔV по точке пересечения						
	графика для больших объемов (идеального газа) с осью 0-V.						
6	Верно найдена систематическая ошибка измерения объема ΔV =						
	(2,5-3,5) см ³ . Балл ставится за результат с любым знаком.						
7	Идея определения в по точке пересечения графика для малых						
	объемов с осью 0-V (с учетом коррекции ΔV).						
8	Верно найден параметр $b = (0.4 - 0.5) \cdot 10^{-3} \text{ м}^3/\text{моль}$	1					
9	Верно определен размер молекулы вещества	1					
	$d = (0.85 - 0.95) \cdot 10^{-9} M$						
	Итого	10					