
Муниципальный этап всероссийской олимпиады школьников по физике. 2024/25 учебный год. 7 класс. Максимальный балл – 40.

Задача №1

Семиклассник Саша нашел рисунок простейшей схемы эскалатора (рис.1). Он прочел, что эскалатор работает как гигантская цепная передача: ведущая звездочка (1), вращаемая электродвигателем (2) протягивает цепь-дорожку (3) из подвижно скрепленных звеньев по ведомой звездочке (4).

Саша напечатал на 3D принтере детали: длинную гибкую зубчатую ленту как модель цепной дорожки и шестеренку как модель ведущей звездочки. Шестеренка получилась радиусом 3 см и имела 24 зубца. Из-за брака печати Саше пришлось выломать бракованные куски. Шестеренку с пропусками Саша соединил на горизонтальном гладком столе с длинной зубчатой лентой (рис.2).

Примечание: Длина окружности радиуса г равна $L = 2\pi r$, где $\pi = 3,14$.

Вопрос 1

На какое расстояние относительно начального положения (оно представлено на рисунке) переместится каждый зубец ленты за 41 с, если равномерно вращающаяся шестерёнка делает 1 оборот по часовой стрелке за 12 с? Считать, что: если нет контакта между зубцами ленты и шестерёнки, лента остается неподвижной; предыдущий зуб находится все время в контакте с лентой, пока следующий зуб не зайдет в выемку на ленте полностью.

Вопрос 2

С какой скоростью будет двигаться замкнутая гибкая лента модели эскалатора, собранная по рисунку 1, если поставить «бракованную» шестеренку на место ведущей звездочки? Шестерёнка как прежде делает 1 оборот по часовой стрелке за 12 с.

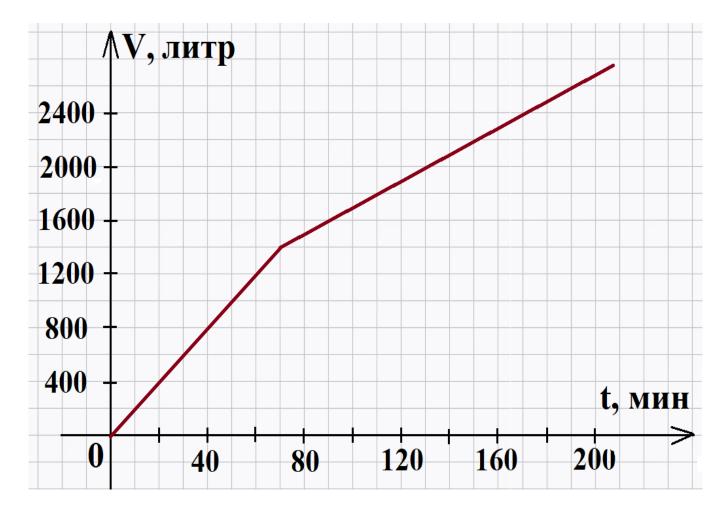
Возможное решение.

Вопрос №1:

На оставшейся части шестерёнки имеется 14 зубцов (5 снизу и 9 сверху), «пропуски» расположены симметрично (убрано по 5 зубьев с каждой стороны). Шестерёнка делает один оборот за 12 с, за 41 с она сделает три полных оборота и ещё 5/12 оборота. За три полных оборота лента переместится влево на $3 \times 14 = 42$

расстояний между зубцами. За оставшиеся 5/12 оборота шестерёнка провернётся так, что внизу окажется 11й зубец, если за первый считать центральный нижний зубец. Из-за удалённого куска шестерёнки лента при этом переместится только на 5 расстояний между зубцами. Поэтому за все 41 с лента переместится влево на 42 + 5 = 47 таких расстояния. Учитывая, что одно такое расстояние равно 1/24 длины окружности шестерёнки, общее смещение рейки в сантиметрах составит

$$s = \frac{47}{24} * 2\pi r = \frac{47}{24} * 2 * 3,14 * 3 \approx 37$$
 см


Вопрос №2:

Замкнутая гибкая лента будет касаться половины окружности приводной шестеренки. Поскольку на «бракованной» шестеренке в каждом удаленном секторе отсутствует менее 12 зубцов, то на скорость замкнутой ленты удаление не повлияет. Скорость ленты будет равна скорости обода шестеренки.

$$v = \frac{2\pi r}{t} = \frac{2 * 3,14 * 3}{12} \approx 1,6 \text{ cm/c}$$

Критерии оценивания.

No	Критерий	Кол-во
J1⊻	Критерии	баллов
1	Указано, что одно расстояние между зубцами равно 1/24 длины окружности	1
2	Найдено количество оставшихся зубцов у шестерёнки (14 штук)	1
3	Найдено количество полных оборотов за 41 секунду (3 оборота)	1
4	Найдено, что остаётся ещё 5/12 оборота	1
5	Найдено перемещение ленты при 3 оборотах, выраженное в расстояниях между зубцами (42) или сантиметрах (33 см)	1
6	Найдено перемещение ленты при 5/12 оборота, выраженное в расстояниях между зубцами (5) или сантиметрах (4 см)	1
7	Найдено полное перемещение ленты, выраженное в расстояниях между зубцами (47 расстояний)	1
8	Найдено полное перемещение ленты в сантиметрах (37 см)	1
9	Указано, что на скорость замкнутой ленты удаление такого количества зубцов не повлияет	1
10	Найдена скорость ленты (1,6 см/с)	1
	Итого	10

Дядя Федор на своем дачном участке решил наполнить водой бассейн объемом 20 м³. На рисунке представлен график зависимости объема воды в бассейне от времени. Через некоторое время нетерпеливый Шарик решил ускорить процесс, нажал неизвестную кнопку и нечаянно включил насос, который откачивает воду из бассейна.

<u>Bonpoc №1</u>: С какой скоростью заполнялся бассейн до включения насоса, т.е. сколько M^3 воды втекало в бассейн за 1 час?

<u>Bonpoc №2</u>: Через сколько минут после начала заполнения бассейнна Шарик включил насос?

<u>Bonpoc №3</u>: С какой скоростью насос откачивает из бассейна воду, т.е. сколько \mathbf{m}^3 воды вытекает из бассейна за 1 час?

Вопрос №4: Сколько необходимо времени для заполнения бассейна?

Возможное решение.

<u>Bonpoc №1</u>: Обозначим скорость заполнения μ. Из графика видно, что за 40 мин вливается 800 л воды, значит

мин вливается
$$800$$
 л воды, значит
$$\mu_1 = \frac{V}{t} = \frac{800 \pi}{40 \text{мин}} = \frac{0.8 \text{м}^3}{\frac{2}{3} \text{ч}} = 1.2 \frac{\text{м}^3}{\text{ч}}$$

Вопрос №2: В момент времени 70 мин график имеет излом (уменьшился угол наклона графика с осью 0-t), скорость заполнения бассейна уменьшилась, значит в это время Шарик включил насос, который откачивает воду.

Вопрос №3: С момента времени 70 мин вода втекает в бассейн и вытекает. Т.к. объем воды в бассейне увеличивается, значит объем воды, втекающий за единицу времени больше объема вытекающего за это время. Скорость подачи воды в бассейн μ_1 = 1,2 $\frac{^{\text{м}^3}}{^{\text{ч}}}$. Найдем скорость заполнения бассейна при включенном насосе $\mu_2 = \frac{_{1800 \, \pi - 1400 \, \pi}}{_{110 \, \text{мин} - 70 \, \text{мин}}} = \frac{_{400 \, \pi}}{_{40 \, \text{мин}}} = \frac{_{0.4 \, \text{m}^3}}{_{\frac{2}{3} \, \text{ч}}} = 0,6 \, \frac{^{\text{м}^3}}{^{\text{ч}}};$

$$\mu_2 = \frac{1800 \text{ n} - 1400 \text{ n}}{110 \text{ мин} - 70 \text{ мин}} = \frac{400 \text{ n}}{40 \text{ мин}} = \frac{0.4 \text{ m}^3}{\frac{2}{3} \text{ q}} = 0.6 \frac{\text{m}^3}{\text{ q}};$$

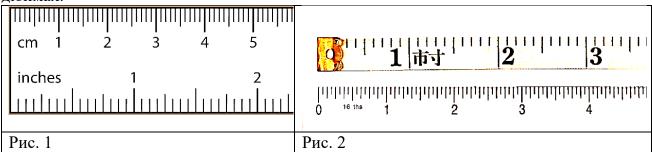
Вопрос №4:Время заполнения t складывается из t₁ =70 минут, за которые в бассейн набралось $V_1 = 1,4$ м³ воды и времени t_2 , когда работал насос. За время работы насоса в бассейн должно набраться

$$V_2 = V$$
- $V_1 = 20 \text{ м}^3$ - 1,4 $\text{м}^3 = 18,6 \text{ м}^3$.
Найдем время $t_2 = \frac{V_2}{\mu_3} = \frac{18,6 \text{ м}^3}{0.6 \frac{\text{м}^3}{\text{q}}} = 31 \text{q}$.

Тогда $t = t_1 + t_2 = 1$ ч 10мин +31ч = 32ч 10мин.

Критерии опенивания

Kpn	терии оценивания	
No	Критерий	Кол-во
3 1_	Терптерии	баллов
1	Найдена скоростью заполнялся бассейн до включения насоса в	1
	мин	
2	Правильно выполнен перевод $\frac{\pi}{M}$ в $\frac{M^3}{4}(1,2\frac{M^3}{4})$	1
3	Верно определено время включения насоса (70 мин)	1
4	Верно найдена скорость заполнения бассейна после включения	1
	насоса $(0,6 \frac{M^3}{4})$	
5	Верно найдена скорость откачивания воды $(0,6 \frac{M^3}{4})$	1
6	Отмечено, что время заполнения бассейна складывается из двух	1
	интервалов (до включения насоса и после)	
7	Найдено время заполнения бассейна после включения насоса	2
	(314)	
8	Найдено все время заполнения бассейна (32ч 10мин)	2
	Итого	10


Примечание: если время заполнения бассейна верно найдено графически (продлен график), то за пункты 6-9 ставится полный балл.

Задача №3

Один из классических героев китайской литературы, царь обезьян Сунь У-кун (вы можете встретить его в фильмах, мультипликации и компьютерных играх), появился на свет из волшебного камня. Вот как описывается этот камень в романе «Путешествие на запад»: «На вершине Горы цветов и плодов стоял волшебный камень, высотой в три чжана, шесть чи и пять цуней, окружностью он был в два чжана и четыре чи».

Три чжана, шесть чи и пять цуней составляют триста шестьдесят пять цуней, что соответствовало тремстам шестидесяти пяти дням, в течение которых происходит смена года на земле. Два чжана и четыре чи составляют двадцать четыре чи, что соответствует двадцати четырем периодам года, указанным в императорском календаре.

На рисунках представлено сравнение различных единиц измерения длины: сантиметров, дюймов и цуней. На первом рисунке линейка проградуирована в сантиметрах (cm) и дюймах (inch); на втором верхняя линейка в цунях, а нижняя – в дюймах.

Пользуясь предложенными сведениями, ответьте на следующие вопросы:

Вопрос №1: Выразите величину 1 цунь в сантиметрах.

Вопрос №2: Какова высота и длина окружности Волшебного камня в метрах?

Вопрос №3: Переведите скорость 55 км/ч в чи/с.

Возможное решение

Вопрос №1:

По рисунку 1 переведём дюймы в сантиметры (для уменьшения погрешности необходимо использовать достаточно большой отрезок):

Дюймы	Сантиметры	Значение 1 дюйма в	Среднее значение 1
		сантиметрах	дюйма в сантиметрах
1,0	2,5	2,5	
1,5	3,7	2,47	2,51
2,0	5,!	2,55	

1 дюйм = $[2,46 \dots 2,56]$ см $(\pm 2\%)$

По рисунку 2 переведём цуни в дюймы (для уменьшения погрешности необходимо использовать достаточно большой отрезок):

Цуни	Дюймы	Значение	1	цуня	В	Среднее	значение	1
		дюймах				цуня в дюймах		
1,5	2,0	1,33						
2,5	3,25	1,29				1,32		
3,0	4,0	1,33						

 $1 \overline{\text{цунь}} = [1,29 \dots 1,35] \overline{\text{дюймов } (\pm 2\%)}$

Отсюда 1 цунь = [3,17 ... 3,46] см, в дальнейших расчётах 1 цунь = 3,32 см

Вопрос №2:

Из условия задачи мы знаем, что 2 чжана 4 чи = 24 чи, отсюда 1 чжан = 10 чи. Также мы знаем, что 3 чжана 6 чи 5 цуней = 365 цуням, так что 1 чи = 10 цуням. Следовательно, длина окружности камня 24 чи = 240 цуней.

Высота камня: 365 цуней = 1211,8 см = [11,51 ... 12,72] м (\pm 5%) Длина окружности камня: 240 цуней = 796,8 см = [7,57 ... 8,37] м (\pm 5%)

Вопрос №3:

$$1$$
 чи = 10 цуней = 33,2 см
 1 км = 100000 см = 3012 чи
 55 км = $55 \cdot 3012 = 165660$ чи
 $55 \frac{\text{км}}{\text{ч}} = \frac{165660}{3600} = 46,0 \frac{\text{чи}}{\text{c}}$
 55 км/ч = [43,7 ... 48,3] чи/с ($\pm 5\%$)

Критерии оценивания

	критерии оценивания						
No	Критерий	Кол-во					
	1 1	баллов					
1	Из рисунка получен правильный перевод дюймы-сантиметры*:						
	1 дюйм = [2,46 2,56] см <i>(ворота 2%)</i>	2					
	1 дюйм = [2,38 2,64] см <i>(ворота 5%)</i>	1					
2	Из рисунка получен правильный перевод цуни-дюймы**:						
	1 цунь = [1,29 1,35] дюймов <i>(ворота 2%)</i>	2					
	1 цунь = [1,25 1,39] дюймов <i>(ворота 5%)</i>	1					
3	Получено верное значение цуня в сантиметрах:						
	1 цунь = [3,17 3,46] см <i>(ворота 5%)</i>	1					
	1 цунь = [2,98 3,67] см (ворота 10%)	0,5					
4	Из текста получены соотношения 1 чжан = 10 чи, 1 чи = 10 цунь	1					
5	Вычислена высота камня:						
	[11,51 12,72] м <i>(ворота 5%)</i>	1					
	[10,91 13,33] м <i>(ворота 10%)</i>	0,5					
6	Вычислена длина окружности камня:						
	[7,57 8,37] м (ворота 5%)	1					
	[7,17 8,77] м (ворота 10%)	0,5					
7	Верно выполнен перевод скорости:						
	[43,7 48,3] чи/с <i>(ворота 5%)</i>	2					
	[41,4 50,6] чи/с (ворота 10%)	1					
	Итого	10					

^{*} Балл за задание выставляется, только при использовании отрезка не менее 1 дюйма.

^{**} Балл за задание выставляется только при использовании отрезка не менее 1 цуня.

Задача №4

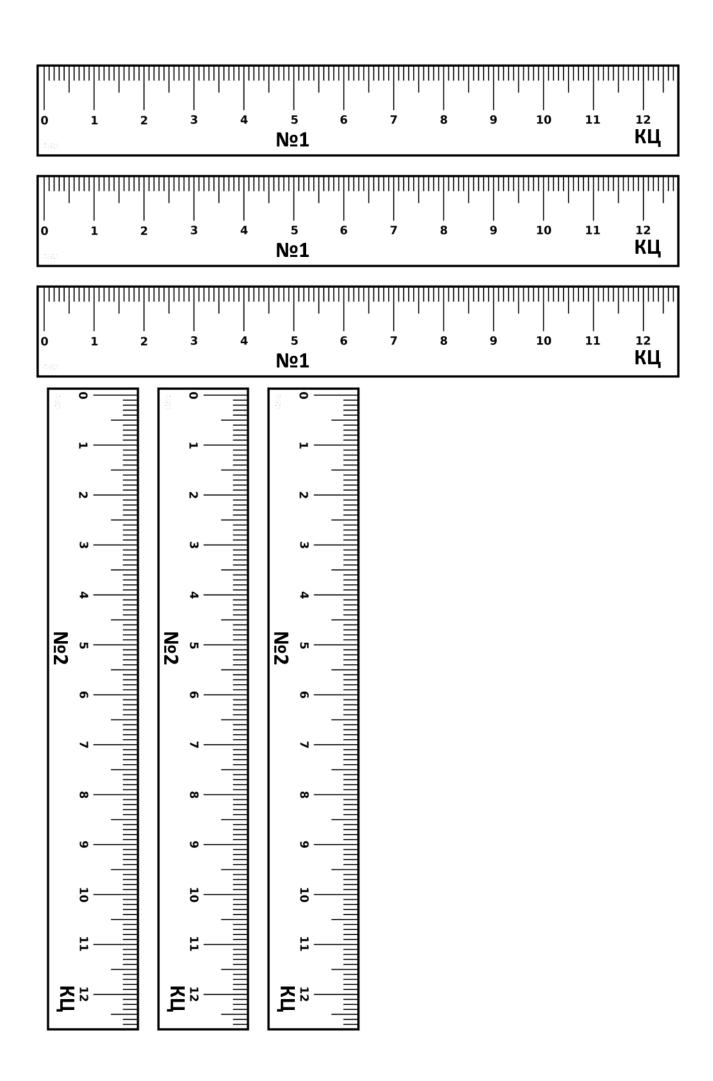
Обычная бумага является анизотропным материалом, то есть ее физические свойства не являются одинаковыми во всех направлениях. Сегодня вы сможете сами в этом убедиться.

Для начала с помощью ножниц аккуратно вырежьте 6 прямоугольных полосок совершенно одинакового размера. Важно не мять полоски!!! Три полоски, обозначенные цифрой 1, сориентированы вдоль короткой стороны листа, а еще три, обозначенные цифрой 2, вдоль длинной.

Давайте проверим, являются ли одинаковыми упругие свойства полосок с номерами 1 и 2. Сравнивать упругие свойства будем в следующем эксперименте: расположим одну из полосок на поверхности стола так, чтобы ровно половина полоски располагалась на столе, а вторая половина свисала с него. При этом свисающая часть полоски будет сгибаться вниз под действием силы тяжести. Расстояние, на которое опускается вниз свисающий конец полоски от плоскости стола, назовем величиной прогиба h (см. рис.). При выполнении эксперимента важно, чтобы часть полоски, лежащая на столе, была плотно к нему прижата. Достаточно

прижать ее рукой.

<u>Bonpoc №1</u>: Является ли величина прогиба одинаковой для полосок № 1 и №2? Если нет, то у полосок под каким номером она больше?


Вопрос №2: Измерьте виличину прогиба для полоски, у которой он больше.

<u>Вопрос №3</u>: Для выравнивания упругих свойств полосок можно сделать полоску, которая прогибается меньше, более узкой, то есть отрезать часть полоски вдоль ее длинной стороны. Определите при какой ширине полоски (измеренной в КЦ), которая изначально прогибалась хуже, ее прогиб станет равен прогибу не обрезанной полоски, которая прогибалась лучше.

Важно! При ответе на каждый вопрос опишите выполненныый вами эксперимент. Помните, что при выполнении экспериментов можно использовать только оборудование, указанное в условии задачи. Например, использовать свою линейку, карандаш или что-либо еще категорически запрещается. При использовани оборудования, не указанного в условии задачи ваше решение будет аннулировано.

Подсказка: опытные экспериментаторы для получения более точных результатов проводят серию измерений. На полосках нарисована шкала, единица измерения которой называется КЦ.

Оборудование: лист бумаги A4 с напечатанными на нем шестью прямоугольными полосками, ножницы (общие на аудиторию).

Возможное решение.

Вопрос №1:

Для ответа на первый вопрос возьмем одну полоску №1 и одну полоску №2, расположим их на столе параллельно друг другу, так чтобы половина каждой свисала со стола. Зрительно видно, что прогиб полоски №1 существенно больше прогиба полоски № 2. Для получения более обоснованного ответа повторим эксперимент с другими полосками.

Вопрос №2:

Для измерения величины прогиба необходимо как-то продлить плоскость стола над согнутой частью полоски. Для этого из остатков бумаги вырежем еще одну полоску и для придания ей жесткости, согнем ее в виде уголка. Такая полоска не будет сгибаться при выдвижении за край стола. Теперь расположим на краю стола полоску №1, выдвинутую наполовину, а поверх нее полоску, согнутую углом. С помощью любой из оставшихся полосок измерим величину прогиба. Для получения более точного результата выполним измерения для двух других полосок №1. В качестве ответа укажем среднее арифметическое по трем значениям.

Вопрос №3:

Для начала разлинуем одну из полосок под номером 2, нарисовав на ней параллельные линии с шагом в 0,2 КЦ. Затем будем поочередно отрезать по одной полоске шириной 0,2 КЦ и сравнивать упругие свойства полоски №1 и обрезанной полоски №2 способом, описанным в ответе на первый вопрос.

Для увеличения точности повторим эксперимент с еще двумя полосками №2.

ВАЖНО!! В решении задачи не приведены численные ответы, так как они сильно зависят от бумаги, использовавшейся на площадке проведения.

Критерии оценивания.

критерии оценивания:	
Критерий	Кол-во баллов
Вопрос №1	
Описан корректный эксперимент, позволяющий выполнить сравнение	1
Проведена серия измерений (минимум два сравнения)	0,5
Сделан вывод, что упругие свойства отличаются	0,5
Сделан вывод, что у полосок пол номером 1 прогиб больше	0,5
Вопрос №2	
Предложен рабочий метод продления плоскости стола	1,5
Проведена серия экспериментов (минимум два)	0,5
Получено верное значение прогиба	1,5
Вопрос №3	
Предложен разумный метод	1,5
Выполнена серия измерений (минимум два)	0,5
Получена верная ширина	2
Итого	10
	Критерий Вопрос №1 Описан корректный эксперимент, позволяющий выполнить сравнение Проведена серия измерений (минимум два сравнения) Сделан вывод, что упругие свойства отличаются Сделан вывод, что у полосок пол номером 1 прогиб больше Вопрос №2 Предложен рабочий метод продления плоскости стола Проведена серия экспериментов (минимум два) Получено верное значение прогиба Вопрос №3 Предложен разумный метод Выполнена серия измерений (минимум два) Получена верная ширина