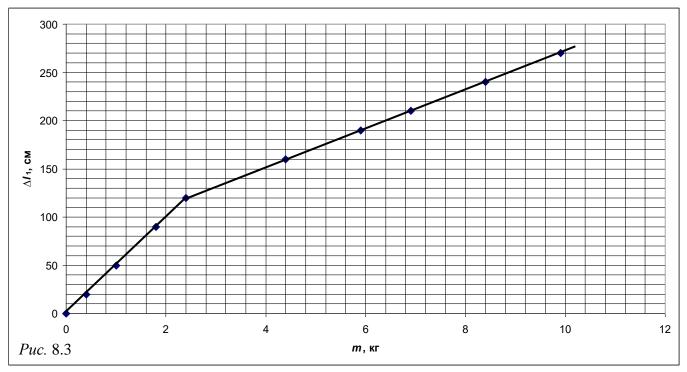

РЕШЕНИЯ И РАЗБАЛЛОВКА ПО ЗАДАЧАМ ДЛЯ VIII КЛАССА


- 8.1. «Кубик с маслом». 1) Масса масла составляет $m=m_2-m_1=0,5$ кг (2 балла), а его объём $V=\frac{m}{\rho}=625$ см 3 (3 балла).
- 2) Объём материала, из которого изготовлен сосуд, равен $V_0 = a^3 V = 7375 \, \mathrm{cm}^3$ (2 балла), плотность материала $\rho_0 = \frac{m_1}{V_0} \approx 0,61 \, \mathrm{г/cm}^3$ (3 балла).
- 8.2. «Опознанный летающий объект-2». 1) Так как условия запуска и движения диска остаются неизменными, он в обоих случаях пролетает одно и то же расстояние S (I балл). Тогда для первого и второго случая можно записать следующие равенства $S = v_1(t+t_1)$ (2 балла) и $S = v_2(t+t_2)$ (2 балла). Из записанных равенств находим время полета фрисби $t = \frac{v_1t_1 v_2t_2}{v_2 v_1} = 3$ (c) (2 балла).
- 2) Расстояние, которое пролетает диск, равно $S = v_1(t + t_1) = 3 \cdot (3 + 7) = 30$ (м) (1 балл, такой же результат получается при использовании значений v_2 и t_2), тогда средняя скорость его полета $v = \frac{S}{t} = \frac{30}{3} = 10$ (м/с) (2 балла).
- 8.3. «Смесь». 1) За 1 с в смесительный бак поступает первое вещество объёмом $V_1 = \frac{m_1}{\rho_1} = \frac{60}{1,2} = 50$ (см³) (2 балла) и второе вещество объёмом $V_2 = \frac{m_2}{\rho_2} = \frac{40}{1,6} = 25$ (см³) (2 балла). Средняя плотность смеси может быть рассчитана по формуле $\rho_{cp} = \frac{m_1 + m_2}{V_1 + V_2} = \frac{60 + 40}{50 + 25} = 1,33$ (г/см³) (3 балла).
- 2) Ежесекундно из бака вытекает вещество объёмом $V_{cm} = V_1 + V_2 = 75$ (см³), поэтому скорость вытекания смеси равна $v = \frac{V_1 + V_2}{S} = \frac{50 + 25}{10} = 7,5$ (см/с) (3 балла).
- 8.4. «Аквариумы». Пусть масса воды в аквариуме равна m. Тогда сила давления воды на дно первого аквариума равна $F_1 = p_0 ab + mg$ (2 балла), второго $F_2 = p_0 2ab + mg$ (2 балла), третьего $F_3 = p_0 3ab + mg$ (2 балла). Из первого равенства получаем, что $p_0 ab = F_1 mg$, из второго $F_2 = 2F_1 2mg + mg = 2F_1 mg$, откуда $mg = 2F_1 F_2$ и $p_0 ab = F_1 2F_1 + F_2 = F_2 F_1$. Подставляя выражения для mg и $p_0 ab$ в третье равенство, получим, что $F_3 = 3F_2 3F_1 + 2F_1 F_2 = 2F_2 F_1$ (4 балла).

8.5. «На onopax». 1) Сила тяжести равна сумме сил, с которыми кирпичи действуют на бревно, $mg = F_1 + F_2$ (1 балл), поэтому $m = \frac{F_1 + F_2}{g} = 50$ (кг) (2 балла).

2) Очевидно, что бревно скорее опрокинется тогда, когда ребёнок встанет на тот его край, который дальше всего выступает за кирпичи (1 балл). Длина этой части бревна равна $l_2 = L - l - l_1 = 5 - 2 - 0.9 = 2.1$ (м) (1 балл). Тогда, с учётом рис. 8.2, запишем правило рычага для момента, когда ребёнок массой M встал на правый край бревна: $mgx = Mgl_2$ (2 балла), где $x = \frac{L}{2} - l_2 = 0.4$ (м) (1 балл). Из записанных равенств получаем, что масса ребёнка не должна превышать $M=m\frac{x}{l_2}=50\cdot\frac{0.4}{2.1}=9.5$ (кг) (2 балла).

8.6. «Две резинки». График зависимости удлинения первой резинки Δl_1 от массы mналитой воды приведён на рис. 8.3 (2 балла; при отсутствии подписи хотя бы одной из осей координат, масштаба, единиц измерения, одной и более контрольных точек ставится 1 балл).

На графике можно отметить излом, после которого следующий участок графика располагается более полого. Это свидетельствует о том, что начали растягиваться обе резинки (1 балл). Для первого участка графика (до излома) можно записать $m_1g = k_1\Delta l_1$ $(0.5 \, баллов)$, откуда коэффициент жёсткости первой резинки $k_1 = 20 \, \text{H/m} \, (1 \, балл)$.

После того, как начинает растягиваться вторая резинка, силы суммируются: $F_{ynp} = F_{ynp1} + F_{ynp2} \ (1\ балл)$. При удлинении первой резинки на $\Delta l_1 = 2$ м в ней возникает сила упругости $F_{ynp1} = 40$ Н $(0,5\ баллов)$, в то время как суммарная сила упругости $F_{ynp} = 60$ Н $(1\ балл)$. Тогда для второй резинки $F_{ynp2} = F_{ynp} - F_{ynp1} = 60$ Н -40 Н = 20 Н $(1\ балл)$. При этом вторая резинка растянулась на $\Delta l_2 = 2$ м -1,2 м = 0,8 м $(1\ балл)$, откуда следует, что коэффициент жёсткости второй резинки $k_2 = 30$ Н/м $(1\ балл)$.