#### 8 класс

## Задача 8.1. График скорости лодки.

Моторная лодка, отплывшая от пристани на реке, на протяжении 2 часов двигалась вдоль берега в одну сторону, затем развернулась и через 3 часа вернулась обратно на пристань. Скорость лодки **относительно воды** менялась со временем так, как показано на графике (рис. 8.1).

- 1. Чему равна скорость течения реки?
- 2. Вверх или вниз по течению вначале плыла лодка?
- 3. На каком расстоянии от пристани лодка развернулась?

Скорость течения реки считать постоянной. Временем, потраченным на разворот, и шириной реки пренебречь.

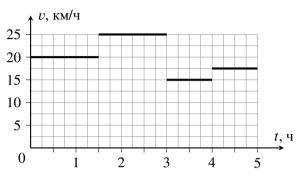



Рис. 8.1.

Ответ: 1) 3 км/ч; 2) вниз по течению; 3) 48,5 км.

**Решение:** 1. Пусть u — скорость течения реки, причём будем считать, что u > 0, если вначале лодка двигалась по течению, и u < 0, если вначале она двигалась против него.

Найдём расстояния, которые прошла лодка туда и обратно:

$$s_{\text{туда}} = (20 \text{ км/ч} + u) \cdot 1,5 \text{ ч} + (25 \text{ км/ч} + u) \cdot 0,5 \text{ ч} = 42,5 \text{ км} + u \cdot 2 \text{ ч},$$

 $s_{\text{обратно}} = (25 \text{ км/ч} - u) \cdot 1 \text{ ч} + (15 \text{ км/ч} - u) \cdot 1 \text{ ч} + (17,5 \text{ км/ч} - u) \cdot 1 \text{ ч} = 57,5 \text{ км} - u \cdot 3 \text{ ч}.$ 

Оба расстояния равны, поэтому

$$42.5 \text{ KM} + u \cdot 2 \text{ H} = 57.5 \text{ KM} - u \cdot 3 \text{ H} \Rightarrow u \cdot 5 \text{ H} = 15 \text{ KM} \Rightarrow u = 3 \text{ KM/H}.$$

- 2. Так как u > 0, вначале лодка двигалась по течению.
- 3. Вычислим расстояние, пройденное лодкой от пристани до разворота:

$$L = 42.5 \text{ km} + u \cdot 2 \text{ y} = 42.5 \text{ km} + 3 \text{ km/y} \cdot 2 \text{ y} = 48.5 \text{ km}.$$

# Критерии:

| 1) Записано правильное выражение для пути в одну сторону                             |
|--------------------------------------------------------------------------------------|
| 2) Записано правильное выражение для пути в другую сторону                           |
| 3) Найдена скорость течения (3 км/ч)                                                 |
| 4) Правильно определено первоначальное направление движения лодки (вопрос 2) 2 балла |
| 5) Найдено расстояние до места разворота (48,5 км)                                   |

## Указание проверяющим:

В пп. 1 и 2 знак перед u будет систематически отличаться от приведённого в авторском решении, если участник предположил, что вначале лодка шла против течения. Если всё сделано корректно, баллы ставятся.

## Задача 8.2. Раз термометр, два термометр.

Как-то раз, оставшись в школьной лаборатории, девочка Маша взяла два теплоизолированных калориметра. В первый из них она налила немного холодной воды, а во второй — немного горячей, после чего опустила в каждый калориметр один из двух **одинаковых** термометров. Записав показания приборов (5 °С и 75 °С), девочка быстро вытащила оба термометра и поменяла их местами. Оказалось, что теперь термометр, опущенный в холодную воду, показывает 7 °С, в то время как другой — 70 °С. Удивившись, Маша решила перелить всю горячую воду в калориметр с холодной, не вынимая оттуда прибор. Определите, какую температуру должен теперь показать термометр, оставшийся в калориметре с водой. Оба прибора исправны, а их показания Маша записывала, дождавшись наступления теплового равновесия. Теплоёмкостью стенок калориметров можно пренебречь, вода из сосудов не выливается.

Ответ: 24°С.

**Решение:** Пусть C — теплоёмкость одного термометра, а  $m_1$  и  $m_2$  — масса воды в первом и втором сосуде соответственно. Когда первый прибор, имевший температуру 5 °C, перенесли в сосуд с водой при температуре 75 °C, там установилась температура 70 °C:

$$C(70^{\circ}\text{C} - 5^{\circ}\text{C}) = c_{\text{B}}m_2(75^{\circ}\text{C} - 70^{\circ}\text{C}) \qquad \Rightarrow \qquad m_2 = \frac{C \cdot 13^{\circ}\text{C}}{c_{\text{p}}}.$$

Наоборот, второй прибор, имевший температуру 75 °С, перенесли в сосуд с водой при 5 °С, после чего там установилась температура 7 °С:

$$C(75\,^{\circ}\text{C} - 7\,^{\circ}\text{C}) = c_{\text{B}} m_1 (7\,^{\circ}\text{C} - 5\,^{\circ}\text{C}) \qquad \Rightarrow \qquad m_1 = \frac{C \cdot 34\,^{\circ}\text{C}}{c_{\text{B}}}.$$

Когда же Маша перелила горячую воду, имевшую температуру 70 °C, в калориметр с холодной водой и термометром при 7 °C, в нём установилась температура t. Найдём её, подставляя в уравнение теплового баланса полученные выражения для  $m_1$  и  $m_2$ :

$$C(t-7^{\circ}\mathbb{C}) + c_{\mathrm{B}}m_{1}(t-7^{\circ}\mathbb{C}) = c_{\mathrm{B}}m_{2}(70^{\circ}\mathbb{C} - t) \qquad \Rightarrow \qquad (C+34C)(t-7^{\circ}\mathbb{C}) = 13C(70^{\circ}\mathbb{C} - t) \qquad \Rightarrow \qquad 48t = 35 \cdot 7^{\circ}\mathbb{C} + 13 \cdot 70^{\circ}\mathbb{C} \qquad \Rightarrow \qquad t \approx 24^{\circ}\mathbb{C}.$$

## Критерии:

| 1) Правильно записано уравнение теплового баланса для первого сосуда       | 2 балла |
|----------------------------------------------------------------------------|---------|
| 2) Правильно записано уравнение теплового баланса для второго сосуда       | 2 балла |
| 3) Правильно записано уравнение теплового баланса для третьего случая      |         |
| 4) Получено значение установившейся температуры $t \approx 24  ^{\circ}$ С |         |

## Указание проверяющим:

- 1) Участники могут по ходу решения подставить известную им, но не данную в условии удельную теплоёмкость воды  $(4200 \, \text{Дж/(кr} \cdot \text{°C}))$ . Это допустимо.
- 2) Если в каком-либо уравнении (пп. 1-3) перепутаны температуры и/или знаки, баллы за соответствующий пункт не ставить!

## Задача 8.3. Пузатый сосуд.

В сообщающиеся сосуды, правый из которых представляет собой вертикальный цилиндр диаметром d, закрытый тяжёлым поршнем, а левый — очень узкую вертикальную трубку с уширением в форме сферы диаметром D, налиты бензин и вода. Бензин полностью находится в сферической части, занимая её нижнюю половину, а поршень расположен на одном уровне с нижней поверхностью бензина (см. рис. 8.2). На поршень сверху поставили груз, масса которого в 2,8 раза больше массы поршня, в результате чего бензин полностью заполнил **верхнюю** половину сферической части левого сосуда. Каково отношение D/d? Плотность бензина равна 70% от плотности воды. Трением между поршнем и стенками пренебречь.

*Примечание:* Объём шара вычисляется по формуле  $V=4\pi R^3/3$ , где R — радиус шара, а площадь круга — по формуле  $S=\pi r^2$ , где r — радиус круга.



 D

 d

 бензин

 2,8m

 h ↓

 вода

Рис. 8.2.

Рис. 8.3.

**Ответ:** D/d = 1,2.

**Решение:** Пусть m — масса поршня. Тогда масса груза равна 2,8m. Когда на поршень поставили груз, тот опустился вниз на расстояние h (рис. 8.3). Так как вода несжимаема, объём воды, убывшей справа, равен объёму половины сферической части левого сосуда:

$$\frac{\pi d^2}{4} \cdot h = \frac{1}{2} \cdot \frac{\pi D^3}{6} \qquad \Rightarrow \qquad h = \frac{D^3}{3d^2}.$$

Давление бензина в первом случае равно давлению поршня:

$$\rho_6 g \cdot \frac{D}{2} = \frac{mg}{\pi d^2 l d}$$
 $\Rightarrow$ 
 $m = \rho_6 \cdot \frac{\pi D d^2}{8}$ .

Запишем теперь условие равенства давлений на уровне поршня во втором случае:

$$\frac{3.8mg}{\pi d^2/4} = \rho_6 g \cdot \frac{D}{2} + \rho_B g \left(\frac{D}{2} + h\right) \qquad \Rightarrow \qquad 3.8 \rho_6 g \cdot \frac{D}{2} = \rho_6 g \cdot \frac{D}{2} + \rho_B g \left(\frac{D}{2} + \frac{D^3}{3d^2}\right) \qquad \Rightarrow \qquad$$

$$\Rightarrow \qquad 2.8 \cdot 0.7 = 1 + \frac{2D^2}{3d^2} \qquad \Rightarrow \qquad \left(\frac{D}{d}\right)^2 = 1.44 \qquad \Rightarrow \qquad \frac{D}{d} = 1.2.$$

## Критерии:

### Указание проверяющим:

- 1) В пп. 2 и 3 недостаточно просто написать  $p_1 = p_2$ . Необходимо выразить давления через m, диаметры/радиусы сосудов и плотности.
- 2) Во всех пунктах допустимо вместо диаметров использовать радиусы сосудов.

### Задача 8.4. Эксперименты с грузиками.

Готовясь к экспериментальному туру олимпиады по физике, мальчик Паша взял рычаг, снабжённый сантиметровыми делениями и способный вращаться вокруг неподвижной горизонтальной оси, соответствующей делению «35», и два грузика с массами  $m_1$  и  $m_2$ . Положив грузик  $m_1$  на деление «64», Паша обнаружил, что рычаг находится в равновесии, если второй грузик поместить на деление «9». Когда же мальчик передвинул первый грузик на деление «54», второй грузик для восстановления равновесия пришлось сместить на деление «21».

- 1. Найдите отношение  $m_1/m_2$ .
- 2. Определите, на какое деление Паше нужно поместить грузик  $m_2$ , чтобы рычаг оказался в равновесии, если грузик  $m_1$  он переложил на деление «19».

Размерами грузиков можно пренебречь. Трение в оси рычага отсутствует.

Ответ: 1) 1,2; 2) 63.

**Решение:** 1. Запишем правило моментов относительно оси для первого случая, учитывая момент силы тяжести  $M_{\text{тяж}}$ , действующей на рычаг:

$$m_1 g(64 \text{ cm} - 35 \text{ cm}) = m_2 g(35 \text{ cm} - 9 \text{ cm}) + M_{\text{TSJM}}$$
  $\Rightarrow$   $29 m_1 = 26 m_2 + M_{\text{TSJM}} / (g \cdot 1 \text{ cm}).$ 

Во втором случае

$$m_1(54-35) = m_2(35-21) + M_{\text{TSW}}/(g \cdot 1 \text{ cm})$$
  $\Rightarrow$   $19m_1 = 14m_2 + M_{\text{TSW}}/(g \cdot 1 \text{ cm}).$ 

Вычтем оба уравнения друг из друга и получим, что

$$10m_1 = 12m_2 \Rightarrow m_1/m_2 = 1,2.$$

2. Пусть N — деление, на которое нужно положить груз  $m_2$  в третьем случае. Снова запишем правило моментов относительно оси:

$$m_1(35-19) + M_{\text{TSYM}}/(g \cdot 1 \text{ cm}) = m_2(N-35).$$

Сложим это уравнение с первым:

$$29m_1 + 16m_1 = m_2(N - 35) + 26m_2$$
  $\Rightarrow$   $45m_1 = m_2(N - 9)$   $\Rightarrow$   $N = 9 + 1, 2 \cdot 45 = 63.$ 

## Критерии:

| Try Try                                                                                                           |  |
|-------------------------------------------------------------------------------------------------------------------|--|
| 1) Идея о том, что есть момент силы тяжести, который необходимо учитывать                                         |  |
| 2) Правильно записано первое правило моментов                                                                     |  |
| 3) Правильно записано второе правило моментов                                                                     |  |
| 4) Правильно записано третье правило моментов (для ответа на второй вопрос задачи) 2 балла                        |  |
| 5) Найдено, что $m_1/m_2=1,2$                                                                                     |  |
| 6) Найден правильный ответ на второй вопрос                                                                       |  |
| Указание проверяющим:<br>Если за какой-либо из пунктов 2-4 поставлены баллы, балл за п. 1 ставится автоматически. |  |
| Максимально возможный балл в 8 классе         40                                                                  |  |