КРИТЕРИИ ОЦЕНИВАНИЯ

8 класс

Задача 8.1

Возможное решение						
(В работах учащихся могут быть предложены и другие правильные способы решения)						
$S = S_1 + S_2 + S_3 + S_4,$	(1)	$t = t_1 + t_2 + t_3$	$+t_4$;	(2)		
$S_1 = 1 \text{ km}$, $\upsilon_1 = 4 \frac{\text{K}}{2}$	$\frac{GM}{H} \Rightarrow t_1 = \frac{S_1}{U_1},$	$(3) t_1 = \frac{1}{2}$	$\frac{1}{4} = 0,25 \text{ y},$			
$S_2 = \frac{1}{3}S$, $\upsilon_2 = \upsilon_{\rm cp} \implies \upsilon_{\rm cp}$	$= \frac{S_2}{t_2} = \frac{S}{3t_2} = \frac{S}{t},$	(4) ⇒	$t_2 = \frac{t}{3},$	(5)		
$t_4 = 0,25 \text{ q}, \ \upsilon_4 = 8$	$S \frac{\mathrm{KM}}{\mathrm{q}} \implies S_4 = \upsilon_4 t_4$	$S_4 = 8 \cdot 0, 25$	= 2 км.	(6)		
$t_2 + t_3 = 1 \Rightarrow $	1+0,25=1,5 ч	$(7) \Rightarrow $	$t_2 = \frac{1,5}{3} = 0,$	5ч,		
$t_3 = t - t_2, \ t_3 = 1 - 0.5 = 0.5 \ \text{ч},$	$v_3 = 4$	$\frac{KM}{Y}, S_3 = 4 \cdot 0$, 5 = 2 км.	(8)		
$S = \nu_{cp}t , \ \nu_{cp}t = S_1 + \nu_{cp}t_2 + S_3 + S_4, (9)$	$\Rightarrow \upsilon_{\rm cp} = \frac{S_1 + t}{t}$	$\frac{S_3 + S_4}{-t_2}$, (10)	$\nu_{\rm cp} = \frac{1+2+2}{1,5-0,5}$	$=5 \frac{KM}{Y}$		

Примерные критерии оценивания	Баллы
Определено время t_1 (3)	1
Получено соотношение (4)	2
Записано выражение (5)	1
Определён путь S_4	1
Определено время t_2	1
Записано выражение (9)	2
Определена средняя скорость (10)	1
Дан верный ответ на вопрос задачи	1

 $S = 5 \cdot 1, 5 = 7,5 \text{ KM}$

Задача 8.2

Возможное решение

(В работах учащихся могут быть предложены и другие правильные способы решения)

После долива керосина уровень воды в правом колене трубки понизится, а в левом повысится. (1) По закону Паскаля $p_{\text{пов}} = p_{\text{прав}}$, (2)

$$p_{\text{прав}} = \rho_{\text{B}} g h_{\text{прав}} + p_0, \quad (3)$$
 $p_{\text{прав}} = \rho_{\text{B}} g h_{\text{прав}} + \rho_{\text{K}} g h_{\text{K}} + p_0$ (4)

 $(p_0 - \text{атмосферное давление});$ $S = 6 \text{ cm}^2, V_{\text{\tiny K}} = 30 \text{ cm}^3 \Rightarrow h_{\text{\tiny K}} = \frac{V_{\text{\tiny K}}}{S}, (5) h_{\text{\tiny K}} = \frac{30}{6} = 5 \text{ cm}$

$$\rho_{\scriptscriptstyle B} g h_{\scriptscriptstyle \Pi e B} = \rho_{\scriptscriptstyle B} g h_{\scriptscriptstyle \Pi p a B} + \rho_{\scriptscriptstyle K} g h_{\scriptscriptstyle K}, (6) \qquad \Delta h_{\scriptscriptstyle I} = h_{\scriptscriptstyle \Pi e B} - h_{\scriptscriptstyle \Pi p a B} = \frac{\rho_{\scriptscriptstyle K}}{\rho_{\scriptscriptstyle B}} h_{\scriptscriptstyle K}, \tag{7}$$

 $\Delta h_1 = \frac{0.8}{1} \cdot 5 = 4$ см составит разность уровней воды в коленах трубки после 1-го опыта.

Считая жидкость несжимаемой, изменения уровня воды в каждом колене $\Delta x_{\text{пев}} = \Delta x_{\text{прав}} = \Delta x$ (8), $\Delta h_{\text{l}} = 2\Delta x$, (9) $\Delta x = \Delta h_{\text{l}}/2$, $\Delta x = 4/2 = 2$ см.

Уровень воды в правом колене опустится на 2 см.

После 2-го опыта шарик будет плавать, частично погружённый в воду, т.к. $\rho_{_{\rm I}} < \rho_{_{\rm B}}$:

$$mg = F_{A}, \quad (10) \qquad m = \rho_{\pi}V_{m}, \quad (11) \qquad F_{A} = \rho_{B}gV_{\pi} \quad (12),$$

$$\rho_{\pi}V_{m}g = \rho_{B}gV_{\pi}, \quad V_{\pi} = \frac{\rho_{\pi}}{\rho_{B}}V_{m}, \quad (13) \quad V_{\pi} = \frac{0.5}{1} \cdot 2.4 = 1.2 \text{ cm}^{3}.$$

Изменение длины столбика воды в трубке составит $l=\frac{V_{\rm n}}{S},\ l=\frac{1,2}{6}=0,2$ см . Эта жидкость по закону Паскаля равными частями распределится в левом и правом коленах $l_{\rm neb}=l_{\rm npab}=\frac{l}{2}$. (14) После 2-го опыта уровень воды в левом и правом коленах

поднимется, $l_{\text{прав}} = \frac{0,2}{2} = 0,1 \text{ см}$.

Однако разность уровней воды в левом и правом коленах после 2-го опыта не изменится $\Delta h_2 = 0 \, . \eqno (15)$

Примерные критерии оценивания	Баллы
Указано утверждение (1)	1
Записаны или использованы формулы (2) – (4)	1
Определена высота столбика $h_{\kappa}(5)$	1
Определена Δh_1 (7)	1
Использованы условия (8) – (9)	1
Определено значение Δx	1
Получена формула (13)	1
Использовано условие (14)	1
Определена величина $l_{\text{прав}}$	1
Сделан вывод о (15)	1

Задача 8.3

Возможное решение

(В работах учащихся могут быть предложены и другие правильные способы решения) Используем условие равновесия для каждого рычага. Для нижнего, $m_3 g l_3$ '= $mg l_3$, $m_3 = m \frac{l_3}{l_3}$ (1), $l_3 ' = l_3 \implies m_3 = m$. (2) Для среднего, $m_2 g l_2 ' = (m + m_3) g l_2$, $m_2 g l_2 ' = 2 m g l_2$, $m_2 = 2m \frac{l_2}{l_2}$ (3), $l_2' = 2l_2$ \Rightarrow $m_2 = m$.(4) Для верхнего, $m_1 g l_1' = (m_2 + m_3 + m) g l_1$, $m_1 g l_1' = 3m g l_1$, $m = \frac{m_1}{3} \frac{l_1}{l_1}$, (5) $l_1' = 4l_1 \Rightarrow m = \frac{4}{3} m_1$, (6) $m = \frac{4}{3} \cdot 90 = 120$ г

Примерные критерии оценивания	Баллы
Получена формула (1)	1
Получено соотношение (2)	1
Получена формула (3)	2
Получено соотношение (4)	1
Получена формула (5)	2
Получено соотношение (6)	2
Получен верный ответ	1

Задача 8.4

Возможное решение

(В работах учащихся могут быть предложены и другие правильные способы решения)
$$\sum_{i=1}^{N} Q_{i} = 0, \quad Q = cm\Delta t; \quad Q_{1} + Q_{2} = 0, \quad cm_{1}(t_{0} - t_{1}) + cm_{2}(t_{0} - t_{2}) = 0, \quad (1) \quad t_{0} = \frac{m_{1}t_{1} + m_{2}t_{2}}{m_{1} + m_{2}}, \quad (2)$$

$$t_{0} = \frac{0.3 \cdot 36 + 0.4 \cdot 78}{0.3 + 0.4} = 60^{\circ}\text{C}; \quad Q_{0} + Q_{3} = 0, \quad cm(t - t_{0}) + cm_{3}(t - t_{3}) = 0, \quad (3) \quad m = \frac{m_{3}(t_{3} - t)}{t - t_{0}}, \quad (4)$$

$$m = \frac{0.5(72 - 68)}{68 - 60} = 0.25 \text{ кг}.$$

Примерные критерии оценивания	Баллы
Записано уравнение теплового баланса (1)	2
Определена температура t_0 (2)	2
Записано уравнение теплового баланса (3)	2
Определена масса т (4)	2
Получен верный ответ	2