
Всероссийская олимпиада школьников по физике Муниципальный этап 9-й класс

Время выполнения – 3 астрономических часа 50 минут.

1. Электрическая цепь, схема которой изображена на рисунке, подключена к батарейке. Вольтметры V_1 и V_2 показывают напряжения U_1 = 1 В и U_2 = 0,1 В, а амперметр показывает силу тока I = 1 мА. Найдите сопротивления приборов. Вольтметры считайте одинаковыми.

Возможное решение

Сопротивление амперметра $R_A = \frac{U_2}{I} = 0$, 1 к Ом.

Обозначим через $R_{\rm V}$ сопротивления вольтметров. Через вольтметр V_1 течёт ток силой $\frac{U_1}{R_{\rm V}}$, который разветвляется на текущий через вольтметр V_2 ток

силой
$$\frac{U_2}{R_V}$$
и ток силой I , текущий через амперметр: $\frac{U_1}{R_V} = \frac{U_2}{R_V} + I$.

Отсюда
$$R_V = \frac{U_1 - U_2}{I} = 0,9$$
 к Ом.

2. Внесённый с мороза в тёплую комнату кусочек льда полностью растаял через 12 минут после начала таяния. Сколько времени он нагревался от -3 °C до -2 °C? Удельная теплоёмкость льда 2100 Дж/(кг·°С), а его удельная теплота плавления 330 кДж/кг.

Возможное решение

Нагрев и таяние льда происходит за счёт теплообмена с тёплым воздухом комнаты. Мощность этого теплообмена пропорциональна разности температуры льда и воздуха. Эта разность примерно одинакова при нагреве льда от -3 °C до -2 °C и в процессе таяния льда при 0 °C. Поэтому мощность теплообмена можно считать одинаковой в этих процессах. Отсюда получаем два уравнения теплового баланса.

Отсюда выражаем неизвестное время нагревания:

$$\begin{cases} cm\Delta t = N\tau_x \\ m\lambda = Nt \end{cases}$$

$$\tau_x = t \frac{c\Delta t}{\lambda} = 720 \frac{2, 1 \cdot 10^3 (-2 - (-3))}{330 \cdot 10^3} \approx 4, 6 \text{ c.}$$

3. В момент, когда опоздавший пассажир вышел на перрон вокзала, с ним поравнялось начало предпоследнего вагона уходящего поезда. Желая определить, на сколько времени он опоздал, пассажир измерил время t_1 , за которое мимо него прошёл предпоследний вагон, и время t_2 , за которое мимо него прошёл последний вагон. Оказалось, что $t_1 = 9c$, а $t_2 = 8c$. Считая, что поезд двигался равноускоренно и длина вагонов одинакова, найти, на какое время пассажир опоздал к отходу поезда.

Возможное решение:

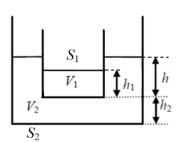
Пусть l – длина вагона, a – ускорение поезда. В момент, когда пассажир вышел на перрон, перемещение поезда составило величину $x_1 = \frac{at^2}{2}$.

За время $t + t_1$ поезд переместился на расстояние $x_2 = \frac{a(t + t_1)^2}{2}$.

Следовательно, длина предпоследнего вагона: $l = x_2 - x_1 = \frac{a(t+t_1)^2}{2} - \frac{at^2}{2}$. Аналогично можно представить и длину последнего: $I = \frac{a(t+t_1+t_2)^2}{2} - \frac{a(t+t_1)^2}{2}.$

$$I = \frac{a(t+t_1+t_2)^2}{2} - \frac{a(t+t_1)^2}{2}.$$

Приравнивая правые части после преобразований, найдём t:


$$(t+t_1)^2-t^2=t_2(2t+2t_1+t_2) \Rightarrow t=\frac{t_2^2+2t_1t_2-t_1^2}{2(t_1-t_2)}=63,5 \text{ c.}$$

- 4. Во время нахождения судна в шлюзе в его трюме образовалась течь, которая была замечена, когда судно погрузилось в воду на 10 см ниже ватерлинии (линия по борту, до которой судно погружается в воду при нормальной осадке). Воду из трюма сразу стали откачивать насосами со скоростью 1000 литров в минуту. Площадь сечения судна равна $S_1 = 500 \text{ м}^2$, площадь шлюза – $S_2 = 2000 \text{ м}^2$. Сделайте пояснительный рисунок и определите:
- 1. Через какое время ватерлиния судна покажется из-под воды?
- 2. Как изменится уровень воды в шлюзе? (Шлюз можно рассматривать как закрытый бассейн.)

Возможное решение

Обозначим площадь сечения корабля S_1 , шлюза $-S_2$, глубину погружения судна -h, расстояние от дна шлюза до дна судна – h_2 , объём воды в трюме – V_1 и высотой h_1 , объём воды в шлюзе – V_2 .

Условие равновесия судна $(m_c + m_{\scriptscriptstyle \rm B})g =$ $ho g V_{ ext{norp}}$, где m_c – масса самого судна, $m_{ ext{\tiny B}} =
ho V_1 =$ $ho S_1 h_1$ – масса воды в трюме, $V_{\text{погр}} = S_1 h$ – объём погруженной части судна, ρ – плотность воды.

После подстановки и деления на $\rho S_1 g$ останется $\frac{m_c}{\rho S_1} + h_1 = h$.

Учитывая постоянство дроби $\frac{m_c}{\rho S_1}$, следует отметить тот факт, что от количества воды в трюме разность $(h-h_1)$ не зависит:

$$h - h_1 = \frac{m_c}{\rho S_1} = const$$
 (*).

1) Поэтому, когда при откачке воды ватерлиния появится (т. е. h уменьшится на $h_0 = 10$ см — отсутствует на рисунке), h_1 уменьшится на ту же величину h_0 .

Найдём время этого убывания воды в трюме (или появления ватерлинии из-под воды): $S_1h_0 = v \cdot t$, где v = 1000 л/мин — скорость откачивания воды. Откуда t = 50 мин (5 баллов).

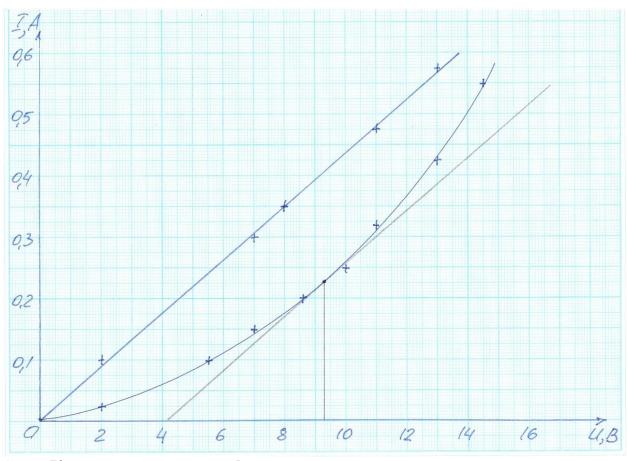
2) Запишем объём всей воды в шлюзе и трюме судна:

$$V = S_2 h_2 + (S_2 - S_1)h + S_1 h_1 = const.$$

Перегруппируем: $V = S_2(h_2 + h) - S_1(h - h_1) = const$, где $S_1(h - h_1) = const$ на основании выражения (*).

Тогда $(h_2 + h) = const$ – уровень воды в шлюзе не изменится (и не зависит от количества воды в трюме корабля) (5 баллов).

5. В таблице содержатся экспериментальные данные для построения ВАХ (зависимость силы тока через элемент от напряжения на нём) двух элементов: линейного и нелинейного (данные расположены в случайном порядке).


	1	2	3	4	5	6	7	8	9	10	11	12	13
I, A	0,10	0,02	0,10	0,15	0,30	0,35	0,20	0,25	0,32	0,47	0,42	0,57	0,55
		5								5	5	5	

- 1) Построить ВАХ элементов на одном листе миллиметровой бумаги.
- 2) Какие из приведённых в таблице точек относятся к линейному элементу, а какие к нелинейному?
- 3) Определите сопротивление линейного элемента.
- 4) При каком напряжении сопротивление линейного и нелинейного элементов совпадают?

Оборудование: лист миллиметровой бумаги формата А5.

Примечание: решение без графической обработки данных оценивается в 0 баллов.

Возможное решение:

1)

Критерии оценки графика Перечисленные ниже критерии касаются не существа графика, а его оформления. При этом если график является неверным по существу, график не оценивается.

Баллы	Название критерия	Пояснения
0,5	Размер графика	График должен занимать не менее 70–80 % от
		предложенного формата миллиметровой
		бумаги
0,5	Расположение и	По оси абсцисс откладывается независимая
	ориентация осей	величина, по оси ординат – зависимая
	графика	
0,5	Подписывание	Около осей должны быть указаны
	осей графика	откладываемые величины, единицы их
		измерения и (при необходимости)
		десятичный множитель
0,5	Оцифровка осей	Штрихи на осях должны наноситься через
	графика	равные интервалы и попадать на основные
		линии миллиметровой бумаги. При
		оцифровке штрихов следует использовать
		натуральные числа и числа, кратные 2, 5.
		Интервал между числами 2–4 см
0,5	Точки графика	Должны соответствовать таблице и
		оставаться видимыми на фоне линии. При
		необходимости наносятся с учётом

		погрешности измерения
0,5	Линия графика	Плавная кривая. На графиках должны быть
		проведены «усредняющие» линии. Вместо
		«усредняющих» линий не допускается
		проведение ломаных, последовательно
		соединяющих экспериментальные точки.
		Линейный участок графика должен строиться
		по линейке

- 2) К линейному элементу относятся точки 1, 5, 6, 10, 12 (1 балл). К нелинейному элементу относятся точки 2, 3, 4, 7, 8, 9, 11, 13 (1 балл).
- 3) $R = \frac{U}{I} \approx 22,9$ Ом. Ответ оценивается, если найденное сопротивление соответствует диапазону [21,7; 24,0] Ом (2 балла).
- 4) Необходимо провести касательную, угол наклона которой совпадает с углом наклона графика для линейного элемента. U = 9,3 В. Ответ оценивается, если найденное напряжение соответствует диапазону [7,9; 10,7] В (3 балла).

Критерии оценивания

Критерии и методики оценивания выполненных олимпиадных заданий муниципального этапа всероссийской олимпиады школьников по физике в Архангельской области в 2024/25 учебном году приводятся в соответствии с системой оценивания регионального этапа и осуществляются по критериям, предложенным центральной предметно-методической комиссией. При этом муниципальным предметно-методическим комиссиям рекомендуется оценивать выполнение заданий согласно стандартной методике оценивания решений, если нет специальных указаний.

Каждое задание оценивается в 10 баллов. Максимальный балл – 50.

10 баллов	Полное верное решение
7–9 баллов	Верное решение. Имеются небольшие недочёты, в целом не вли-
	яющие на решение. Допущены арифметические ошибки, не вли-
	яющие на знак ответа
5–7 баллов	Задача решена частично, или даны ответы не на все вопросы
3–5 баллов	Решение содержит пробелы в обоснованиях, приведены не все
	необходимые для решения уравнения
1–2 балла	Рассмотрены отдельные важные случаи при отсутствии решения
	(или при ошибочном решении)
0 баллов	Решение неверное или отсутствует