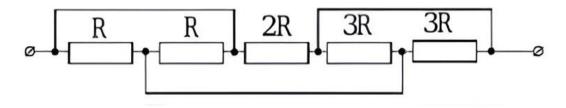
2024-3025 учебный год

Муниципальный этап Всероссийской олимпиады школьников по физике

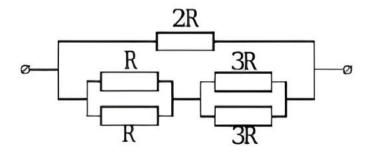
9 класс

Задача 1. Тело начинает двигаться из состояния покоя прямолинейно с постоянным ускорением. В определённый момент равноускоренное движение меняется на равнозамедленное. Как относятся величины ускорений на участках разгона и торможения, если к некоторому моменту времени пройденные пути оказались одинаковы, а средние скорости отличаются в 1,5 раза, и тело продолжает тормозить?


Решение:

$$\begin{split} S_1 &= \frac{1}{2} (V_{max} + V_0) t_1, \text{ где } V_0 = 0, \quad S_2 = \frac{1}{2} (V_{max} + V_{\text{кон}}) t_2, \quad S_1 = S_2, \\ \frac{1}{2} (V_{max} + V_0) t_1 &= \frac{1}{2} (V_{max} + V_{\text{кон}}) t_2, \quad t_2 = \frac{V_{max}}{V_{max} + V_{\text{кон}}} t_1, \\ V_{\text{ср2}} &= \frac{3}{2} V_{\text{ср1}}, \quad S_1 = V_{\text{ср1}} t_1, \quad S_2 = V_{\text{ср2}} t_2, \quad V_{\text{ср1}} t_1 = V_{\text{ср2}} t_2, \\ V_{\text{ср1}} t_1 &= \frac{3}{2} V_{\text{ср1}} \frac{V_{max}}{V_{max} + V_{\text{кон}}} t_1, \\ V_{\text{кон}} &= \frac{1}{2} V_{max}, \quad V_{max} = a_1 t_1 \quad , V_{\text{кон}} = V_{max} - a_2 t_2, \quad \frac{1}{2} V_{max} = V_{max} - a_2 t_2, \\ \frac{1}{2} V_{max} &= a_2 t_2, \quad V_{max} = 2 a_2 t_2, \quad a_1 t_1 = 2 a_2 t_2, \\ a_1 t_1 &= 2 a_2 \frac{V_{max}}{V_{max} + V_{\text{Koh}}} t_1, \\ a_1 &= 2 a_2 \frac{V_{max}}{V_{max} + \frac{1}{2} V_{max}}, \frac{a_1}{a_2} = \frac{4}{3} \end{split}$$

Критерии оценивания	баллы
Записано выражение для пройденных путей	2
Установлена связь между временами движения при разгоне и	3
торможении	
Записаны выражения для максимальных скоростей	3
Найдено искомое отношение ускорений	2


Итого 10

Задача 2. Найти сопротивление цепи. Сопротивления резисторов указаны на рисунке.

Решение.

С помощью деформации проводов данная в условии электрическая цепь может быть преобразована к следующей цепи

Сопротивление этой цепи несложно рассчитать. Параллельно включенные резисторы дают сопротивления соответственно R/2 и 3R/2. Будучи включенными последовательно они дают сопротивление 2R. Далее, параллельно включенные резисторы 2R и 2R дают сопротивление R. В итоге, получим

$$R_{\text{обш}} = R$$

Критерии оценивания	баллы
Осуществлено преобразование электрической схемы	5
Приведены расчеты сопротивления участков схемы с	2
резисторами R и 3R	
Приведены расчеты сопротивлений при последовательном и	2
параллельном соединении резисторов	
Дан итоговый ответ	1
Итого	10

Задача 3. В калориметре находится вода массой $m_{\rm B}=0.16$ кг и температурой $t_{\rm B}=30\,^{\circ}{\rm C}$. Для того, чтобы охладить воду, из холодильника в стакан

Решение:

Так как неясно, каким будет конечное содержимое калориметра (растает ли весь лёд?) будем решать задачу «в числах». Количество теплоты, выделяемое при охлаждении воды:

$$Q_1 = 4200 \cdot 0,16 \cdot 30$$
 Дж = 20160 Дж.

Количество теплоты, поглощаемое при нагревании льда:

$$Q_2 = 2100 \cdot 0,08 \cdot 12$$
 Дж = 2016 Дж.

Количество теплоты, поглощаемое при таянии льда:

$$Q_3 = 334000 \cdot 0,08$$
 Дж $= 26720$ Дж

Видно, что количества теплоты Q_1 недостаточно для того, чтобы расплавить весь лёд ($Q_1 < Q_2 + Q_3$). Это означает, что в конце процесса в сосуде будут находиться и лёд, и вода, а температура смеси будет равна $t_{\rm смеси} = 0$ °C.

Критерии оценивания	баллы
Записано выражение для количества теплоты, выделяемого при	2
охлаждении воды	
Записано выражение для количества теплоты, поглощаемого при	2
нагревании льда	
Записано выражение для количества теплоты, поглощаемого при	2
таянии льда	
Сделан правильный вывод о конечной температуре смеси	2
Дан итоговый ответ	2
Итого	10

Задача 4. Вода в цилиндрическом сосуде сечением 225 см² разделена на два слоя. Верхний слой пресной воды имеет толщину 5 см. Плотность пресной воды 1 $\frac{\Gamma}{\text{см}^3}$, нижний слой воды толщиной 10 см соленый. Плотность соленой воды 1,2 $\frac{\Gamma}{\text{см}^3}$. В сосуд опускают куб с длиной ребра 10 см. Плотность вещества

куба равна плотности пресной воды. Определите высоту выступающей из воды части куба при его плавании.

Решение.

Обозначим: S — площадь сечения сосуда, h — толщина слоя пресной воды, a — длина ребра куба, ρ_1 — плотность пресной воды, ρ_2 — плотность соленой воды,

х – искомая величина. Так как a>h, то новая толщина слоя пресной воды при плавании куба определяется формулой

$$h' = h \cdot \frac{S}{S - a^2}.$$

Условие равновесия куба при плавании:

$$\rho_1 h \cdot \frac{S}{S - a^2} \cdot a^2 + \rho_2 (a - x - h \cdot \frac{S}{S - a^2}) \cdot a^2 = \rho_1 a^3$$

После упрощения получаем:

$$x = (a - h \cdot \frac{S}{S - a^2}) \cdot \frac{\rho_2 - \rho_1}{\rho_2} = 1,67 \text{ MM}$$

Критерии оценивания	баллы
Записано выражение для новой толщины слоя пресной воды	2
Записано правильное выражение для силы Архимеда	4
Записано условие равновесия кубика при плавании	2
Проведены безошибочные вычисления	1
Дан итоговый ответ	1
Итого	10

Задача 5. Два тела движутся равномерно вдоль одной прямой. Если тела движутся навстречу друг другу, то расстояние между ними уменьшается на 16 метров за каждые 10 секунд. Если эти тела с такими же по модулю скоростями движутся в одном направлении, то расстояние между ними увеличивается на 3 метра за каждые 5 секунд. Определите числовое значение скорости каждого тела относительно неподвижной системы отсчёта.

Решение.

Выбор направления координатной оси не влияет на числовое значение ответа задачи т. к. по условию задачи требуется определить модуль скорости первого

и второго тела. Решение задачи основано на законе сложения скоростей и уравнениях кинематических величин при равномерном движении. При движении тел навстречу друг другу уменьшающееся расстояние l_1 равно сумме путей, пройденных телами за время t_1 :

$$l_1 = vt_1 + ut_1 = t_1(v+u)$$
 или $v+u = \frac{l_1}{t_1}$.

Поскольку во втором случае расстояние между телами l_2 увеличивается, то одно из тел имеет большую скорость, и поэтому можно записать:

$$l_2 = vt_2 - ut_2 = t_2(v - u)$$
 или $v - u = \frac{l2}{t_2}$.

Сложив правые и левые части полученных уравнений, получим:

$$2v = \frac{11}{t_1} + \frac{12}{t_2}$$
; после подстановки числовых значений получим: $v = 1,1\frac{M}{c}$.

Вычитая правые и левые части полученных уравнений, получим:

$$2u = \frac{11}{t_1} - \frac{12}{t_2}$$
; после подстановки числовых значений получим: $u = 0.5 \frac{M}{c}$

Критерии оценивания	баллы
Записано выражение для расстояния между телами при их	3
движении навстречу друг другу	
Записано выражение для расстояния между телами при их	3
движении в одном направлении	
Приведены безошибочные вычисления	2
Дан итоговый ответ	2
Итого	10