9 класс

- **1. Петля времени (Клепиков М.).** Из пункта A в пункт B, расстояние между которыми s, выехали два автомобиля: первый начал движение из состояния покоя с постоянным ускорением, второй, имея начальную скорость v, тормозил с постоянным ускорением так, что к концу пути в пункте B полностью остановился. На встречу им из пункта B одновременно выехал третий автомобиль, имея неизвестную постоянную скорость u. Он закончил свое движение в пункте A одновременно с тем, как первые два автомобиля прибыли в пункт B.
 - **1.** Какую скорость v_1 имел первый автомобиль в конце своего пути?
 - **2.** С какой скоростью u двигался третий автомобиль?
 - 3. Сколько прошло времени между встречами третьим автомобилем первого и второго?

Возможное решение

Первый и второй автомобиль закончили свое движение одновременно, преодолев одинаковое расстояние. Первый:

$$s=\frac{a_1t^2}{2},$$

второй:

$$s = vt - \frac{a_2t^2}{2},$$

кроме этого

$$t = \frac{v}{a_2} \implies v = a_2 t,$$

значит

$$s = a_2 t^2 - \frac{a_2 t^2}{2} = \frac{a_2 t^2}{2}$$
,

откуда следует, что

$$a_1 = a_2 \equiv a$$
.

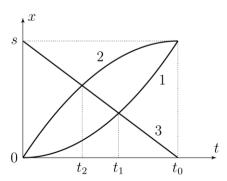
Можем сделать вывод, что, двигаясь с одинаковыми по модулю ускорениями, первый и второй автомобиль за все время движения изменили свою скорость на одинаковую по модулю величину v, значит

$$v_1 = v$$
.

Третий автомобиль преодолел это же расстояние с постоянной скоростью u за то же время, что и другие два:

$$u = \frac{s}{t} = \frac{at^2}{2t} = \frac{v}{2}.$$

Для наглядности представим графики зависимости координаты от времени для всех участников движения



Найдем момент времени, когда третий автомобиль встретил первый:

9 класс

$$s - ut_1 = \frac{at_1^2}{2}.$$

Ускорение выразим через изменение квадрата скорости («формула без времени»):

$$v^2 - 0^2 = 2as, \Longrightarrow a = \frac{v^2}{2s}.$$

Подставим это в предыдущее уравнение:

$$s - \frac{v}{2}t_1 = \frac{v^2t_1^2}{4s}.$$

Решим это уравнение относительно t_1 и найдем момент времени встречи первого и третьего автомобилей:

$$t_1 = \frac{-\frac{v}{2} \pm \sqrt{\frac{v^2}{4} + 2as}}{a}.$$

Подставим выражение для ускорения и в итоге получим ответ:

$$t_1 = \frac{s}{v} \left(\sqrt{5} - 1 \right).$$

Использован положительный корень уравнения.

Аналогично приравняем уравнения движения второго и третьего автомобиля.

$$s - \frac{v}{2}t_2 = vt_2 - \frac{at_2^2}{2}.$$

Решим квадратное уравнение и подставим выражение для ускорения. Получим

$$t_2 = \frac{s}{v} \left(3 \pm \sqrt{5} \right).$$

Для сравнения найдем общее время движения третьего автомобиля:

$$t_0 = \frac{2s}{v}.$$

Заметим, что время t_2 гарантированно меньше общего времени движения, поэтому возьмем только один корень:

$$t_2 = \frac{s}{v} \left(3 - \sqrt{5} \right).$$

Искомое время между встречами:

$$t = t_1 - t_2 = \frac{s}{v} (\sqrt{5} - 1) - \frac{s}{v} (3 - \sqrt{5})$$

Или

$$t = \frac{2s}{v} (\sqrt{5} - 2).$$

Критерии оценивания

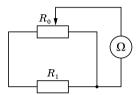
№	Критерий	Балл
1	Обоснованное утверждение равенства ускорений первых двух автомобилей.	1
2	$v_1 = v$, получено из равенства ускорений и времени движения.	1
3	Найдена скорость третьего автомобиля $u=\frac{v}{2}$.	1
4	Уравнение зависимости координаты первого (или второго) тела от времени.	1
5	Уравнение зависимости координаты третьего тела от времени.	1
6	Найден один из моментов встречи $\frac{s}{v} (\sqrt{5} - 1)$ или $\frac{s}{v} (3 - \sqrt{5})$	2
7	Найдено общее время движения $t_0 = \frac{2s}{v}$	1

8	Найдет второй момент встречи. Допускается находить его, ссылаясь на симметрию	1
	ситуации.	
9	Итоговое выражение для промежутка времени $t = \frac{2s}{v}(\sqrt{5} - 2)$	1
Итого:		10

Примечание для жюри

Полностью правильное решение, полученное неавторским методом, оценивается полным баллом. Недопустимо снижать оценку за «неправильное» оформление или неаккуратные записи.

2. МО от МЮ (Замятнин М., Вергунов А.). Определите показания омметра в цепи (см. рисунок) если сопротивление резистора $R_1 = 30$ кОм, полное сопротивление потенциометра $R_0 = 20$ кОм, а ползунок потенциометра расположен так, что показания омметра максимальны.



Возможное решение

Выясним при каком положении ползунка потенциометра показания омметра будут максимальны. Пусть ползунок делит сопротивление R_0 на две части равные αR_0 и $(1-\alpha)R_0$, тогда показания омметра R_2 будут равны:

$$\frac{1}{R_2} = \frac{1}{(1-\alpha)R_0} + \frac{1}{\alpha R_0 + R_1};$$

$$R_2 = \frac{(\alpha R_0 + R_1)(1 - \alpha)R_0}{R_0 + R_1};$$

$$R_2 = \frac{-\alpha^2 R_0^2 + \alpha (R_0^2 - R_0 R_1) + R_0 R_1}{R_0 + R_1}.$$

В числителе выражения получилось квадратное уравнение на α , графиком такой зависимости будет являться парабола с ветвями вниз. Значит максимум этой зависимости можно найти по вершине параболы.

$$\alpha_{\text{вершины}} = \frac{(R_0^2 - R_0 R_1)}{2R_0^2} = \frac{R_0 - R_1}{2R_0} = -0.25.$$

Такой результат означает, что вершина параболы находится в отрицательной области α , а значит при $\alpha > 0$ R_2 всегда убывает. Тогда максимум показаний омметра достигается при крайнем левом положении ползунка реостата.

$$R_{2\text{max}} = \frac{R_1 R_0}{R_0 + R_1} = 12 \text{ кОм.}$$

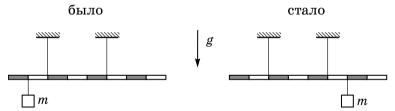
Критерии оценивания

№	Критерий	Балл
1	Использована формула для параллельного соединения резисторов или аналогичные	1
	верные формулы	
2	Получена верная формула, связывающая показания омметра с положением	1
	ползунка потенциометра	
3	Выражение приведено к квадратичной зависимости	2
4	Правильно найден максимум квадратичной зависимости	2
5	Сделан вывод о том, что показания омметра всегда убывают	2
6	Найдены максимальные показания омметра	2

Примечание для жюри

Полностью правильное решение, полученное неавторским методом, оценивается полным баллом. Недопустимо снижать оценку за «неправильное» оформление или неаккуратные записи.

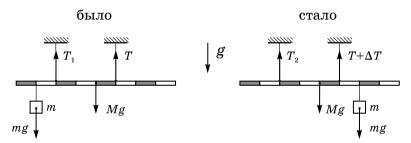
- **3. Перенос массы (Вергунов А.).** Небольшой груз, подвешенный к однородной доске, перенесли слева направо (как показано на рисунке). При этом сила натяжения одной из нитей увеличилась на $\Delta T = 15 \text{ H}$.
- 1. Сила натяжения какой из нитей увеличилась?
- 2. Определите массу грузика т.
- 3. При какой массе M доски все нити будут оставаться натянутыми независимо от места крепления груза массой m?



Нити считайте невесомыми и нерастяжимыми, ускорение свободного падения $g=10\,\mathrm{m/c^2}$. Все необходимые расстояния можете взять из рисунка.

Возможное решение

При переносе грузика слева направо увеличится сила натяжения правой нити. Расставим силы, действующие на систему в обоих случаях:



Чтобы исключить из уравнений силу натяжения левой нити, запишем правило моментов относительно точки крепления левой нити для обоих случаев. Для первого:

$$T3l + mgl = Mg2l$$
.

Для второго:

$$(T + \Delta T)3l = Mg2l + mg4l.$$

Сократим l и вычтем из второго уравнения первое:

$$3\Delta T - mg = 4mg;$$

 $m = 3\Delta T/(5g) = 0.9$ кг.

Если подвесить груз на левый край доски может провиснуть правая нить. Запишем правило моментов относительно точки крепления левой нити, предположив, что правая нить провисла:

$$mg2l = Mg2l;$$

 $M = m.$

То есть правая нить не будет провисать при массе доски M > m.

Если подвесить груз на правый край доски, то может провиснуть левая нить. Запишем правило моментов относительно правой нити, предположив, что левая нить провисла:

$$Mgl = mg3L;$$

 $M = 3m.$

То есть левая нить не будет провисать при массе доски M > 3m. Тогда при M > 2,7 кг никакая нить не будет провисать.

Критерии оценивания

№	Критерий	Балл
1	В решении указано, что увеличится сила натяжения правой нити	1
2	На рисунке правильно расставлены силы, действующие на систему в первом случае	1
3	На рисунке правильно расставлены силы, действующие на систему во втором	1
	случае	
4	Правильно записано правило моментов для сил, действующих на доску в первом	1
	случае	
5	Правильно записано правило моментов для сил, действующих на доску во втором	1
	случае	
6	Получен правильный ответ для т	2
7	Рассмотрен случай провисания правой нити и найдена критическая масса доски M	1
8	Рассмотрен случай провисания левой нити и найдена критическая масса доски M	1
9	Правильно определена масса доски при которой никакая нить не будет провисать	1
	(M > 2.7 kg)	
Итого:		10

Примечание для жюри

Полностью правильное решение, полученное неавторским методом, оценивается полным баллом. Недопустимо снижать оценку за «неправильное» оформление или неаккуратные записи.

4. Холодный чай (Вергунов А.). Калориметр объёмом $V_0 = 200$ мл наполовину заполнен водой температурой t = 90 °C. В калориметр добавляют колотый лёд температурой $t_{\pi} = 0$ °C. Какой минимальной температуры содержимого калориметра можно добиться при условии, что вода из него не выливалась. Удельная теплоёмкость воды $c_{\text{в}} = 4200$ Дж/(кг °C), удельная теплота плавления льда $\lambda = 330$ кДж/кг, плотность воды $\rho = 1000$ кг/м³. Теплоёмкостью калориметра пренебречь.

Возможное решение

При добавлении льда и последующем его таянии уровень жидкости в сосуде не будет изменяться. Так как по условию вода (в том числе талая) из сосуда не выливалась, то максимальный объём талой воды V = 100 мл, тогда максимальная масса добавленного льда $m_{\pi} = \rho_{\text{B}} V = 0.1$ кг.

Количество теплоты необходимое для плавления такой массы льда: $Q_1 = \lambda m_{\pi} = 330000 \cdot 0, 1 = 33 \ кДж$. Количество теплоты, необходимое для охлаждения до нуля градусов горячей воды: $Q_2 = c_{\text{в}} \rho_{\text{в}} 0,5 V_0 (t-t_{\pi}) = 37,8 \ кДж$. Следовательно талая вода нагреется до некоторой температуры $t_{\text{к}}$, с учётом этого составим уравнение теплового баланса:

$$c_{\text{B}}\rho_{\text{B}}0.5V_{0}(t-t_{\text{K}}) = \lambda m_{\text{II}} + c_{\text{B}}\rho_{\text{B}}0.5V_{0}(t_{\text{K}}-t_{\text{II}});$$

 $t_{\text{K}} \approx 5.7 \,^{\circ}\text{C}.$

Критерии оценивания

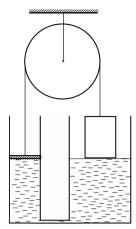
No	Критерий	Балл
1	В решении указано что при таянии льда уровень жидкости остаётся постоянным	1
2	Верно найдена максимальная масса добавленного льда	1
3	Проведён анализ или сделано предположение о конечном состоянии содержимого сосуда	2
4	Использована формула количества теплоты при плавлении льда	1
5	Использована формула для расчёта количества теплоты при изменении температуры	1
6	Составлено правильное уравнение теплового баланса	2
7	Верно найдена конечная температура	2
Ито	ρ Γ 0:	10

Примечание для жюри

Полностью правильное решение, полученное неавторским методом, оценивается полным баллом. Недопустимо снижать оценку за «неправильное» оформление или неаккуратные записи. 9 класс

5. Нагрузили (Кузнецова А.). В U-образную трубку, состоящую из двух вертикальных соединенных цилиндров с сечениями S и 3S налита жидкость плотностью р. В узкий цилиндр вставлен лёгкий поршень, который может двигаться без трения и подтекания жидкости. Поршень плотно прилегает к жидкости. От центра поршня протянута невесомая и нерастяжимая нить, которая перекинута через идеальный блок. Ко второму её концу привязан цилиндр с площадью основания S и плотностью $1,5\rho$. Изначально уровень воды в цилиндрах одинаковый, а груз придерживают так, чтобы он едва касался воды. Нить не провисает, видимые участки нити вертикальные.

Груз плавно отпускают. Определите, какая часть груза окажется погружённой в жидкость после установления равновесия.



Возможное решение

Заметим, что уровень воды в правом колене не изменяется при погружении цилиндра, так как площадь цилиндра и левого колена одинаковы.

Пусть давление жидкости вблизи поверхности левого колена (под поршнем) равняется p_1 , а правого $-p_2=p_0$, где p_0 – атмосферное давление. Тогда $p_2=p_1+\rho gh=p_0$

Пусть сила натяжения нити – T, тогда условие равновесия невесомого поршня:

$$p_0 - \frac{T}{S} = p_1$$

Подставим в это выражение $p_1 = p_0 - \rho g h$ и получим: $\frac{T}{\varsigma} = \rho g h$

$$\frac{T}{S} = \rho g h$$

Условие равновесия груза:

$$T + F_A = mg$$

Глубина погружения груза равняется высоте подъема жидкости в левом колене h в силу того, что они соединены одной нерастяжимой нитью.

Подставляя T, получаем следующее уравнение на h:

$$\rho ghS + \rho ghS = 1,5\rho gH$$

3десь H — высота грузика.

Отсюда h = 0,75H.

Ответ: Груз погружен на $\alpha = \frac{3}{4}$

Критерии оценивания

No	Критерий	Балл
1	Показано, что уровень воды в правом колене не изменяется	2
2	Записано условие равновесия поршня в левом колене или его аналог: $p_0 - \frac{T}{S} = p_1$	2
3	Записана связь давлений: $p_0 = p_1 + \rho g h$	2
4	Записано условие равновесия груза: $T+F_{\rm A}=mg$	1
5	Отмечено, что груз опускается на глубину, равную высоте подъема жидкости в левом колене.	1

6	Получен ответ $h = 0.75H$ или $\alpha = 0.75$	2
Итого:		10

Примечание для жюри

Полностью правильное решение, полученное неавторским методом, оценивается полным баллом. Недопустимо снижать оценку за «неправильное» оформление или неаккуратные записи.