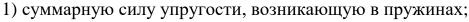
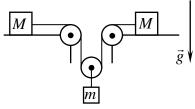

УСЛОВИЯ ЗАДАЧ ДЛЯ Х КЛАССА


- 10.1. «Готовая продукция». Транспортёр, предназначенный для перемещения по цеху банок с готовой продукцией, состоит из двух лент, движущихся перпендикулярно друг другу с постоянными скоростями $v_1 = v_2 = v$ (рис. 10.1).
- 1) Определите минимальную необходимую ширину ленты транспортёра *s* для того, чтобы банки не падали с неё при переходе с одного транспортёра на другой. Размеры банок малы по сравнению с размерами транспортёра, а коэффициенты трения банки о ленты равны и.


Puc. 10.2

Puc. 10.1

- 2) Какое количество теплоты выделяется в системе при переходе одной банки с первого транспортёра на второй? Масса банки равна т.
- 10.2. «На пружинах». К потолку подвешены две невесомые пружины одинаковой длины, но разной жёсткости. К концам пружин прикрепили однородную палку длиной L=1 м и массой M=0.8 кг, а затем на расстоянии $L_1 = 20$ см от левого края подвесили к ней груз массой m = 0.5 кг. Оказалось, что палка при этом заняла горизонтальное положение (рис. 10.2). Определите:

- 2) деформацию каждой пружины, если жёсткость левой пружины равна $k_1 = 100 \text{ H/м}$;
 - 3) жёсткость правой пружины k_2 ;
- 4) деформацию левой пружины после погружения системы в бассейн с водой плотностью $\rho_6 = 1000 \text{ кг/м}^3$. Считать, что площадь сечения стержня равна $S = 1 \text{ см}^2$, объём груза V = 0.5 л. Объёмом и массой пружин пренебречь. Пружины в воде сохраняют вертикальность. Принять, что $g = 10 \text{ м/c}^2$.

Puc. 10.3

10.3. «Поехали!» В системе, показанной на рис. 10.3, определите силы натяжения нитей, действующих на грузы с известными массами M и m. Трение в системе отсутствует; массами нитей, блоков, а также растяжением нитей пренебречь.

10.4. «Реостат». К идеальному источнику с напряже- $U_0 = 30 \text{ B}$ подключили последовательно резистор с сопротивлением $R_1 = 10 \text{ Ом}$, а также реостат с максимальным сопротивлением $R_2 = 20 \text{ Ом}$. Учитывая, что ползунок реостата можно двигать между крайними положениями, определите:

- 1) максимальную и минимальную силу тока через сопротивление R_1 ;
- 2) максимальное и минимальное напряжения на реостате;
- 3) наибольшую тепловую мощность, выделяющуюся на реостате.

- 10.5. «По стаканам». В первом стакане находится $m_1 = 150$ г воды при температуре $t_1 = 60$ °C, во втором $m_2 = 100$ г воды при температуре $t_2 = 20$ °C. В первый стакан положили кубик льда массой $m_3 = 10$ г при нулевой температуре. Спустя некоторое время воду начали переливать из одного стакана в другой до тех пор, пока во втором стакане не оказалась вода массой $m_1 + m_3 = 160$ г при температуре $t_3 = 35$ °C.
 - 1) Какой при этом будет установившаяся температура воды t_4 в первом стакане?
- 2) Какой станет окончательная температура воды t_5 , если всю воду перельют в один стакан?

Удельная теплота плавления льда $\lambda = 330$ кДж/кг, удельная теплоёмкость воды $c_s = 4200$ Дж/(кг · °C). Теплопотерями и теплоёмкостью стаканов пренебречь.

10.6. «*На весах*». На электронных весах лежит нерастяжимый жгут. Коля начинает поднимать его за один из концов так, что длина поднятой с чашки весов части увеличивается на 2 см за 1 с. В таблице приведена зависимость показаний весов m от времени t.

т, кг	0,52	0,48	0,44	0,40	0,36	0,32	0,28	0,24	0,20	0,16
t, c	20	30	40	50	60	70	80	90	100	110

- 1) Постройте на миллиметровой бумаге график зависимости показаний весов m от времени t.
- 2) Используя построенный график, определите время t_0 , спустя которое Коля поднимет весь жгут.
- 3) Используя построенный график, определите массу жгута m_0 и его полную длину l_0 .