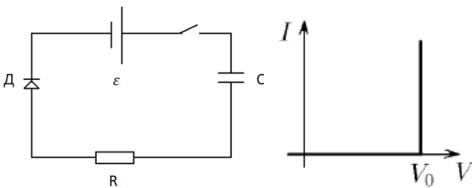
1. «Источник работы»

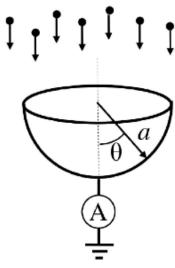
В Чёрном море находится лодка, в которую погружён лёд массой 1 кг при температуре плавления. Найдите, какую максимально возможную работу можно получить, используя процесс таяния льда. Температура воды равна 27°С, температура льда 0°С, удельная теплота плавления льда равна $\lambda = 3.3 * 10^5 \frac{Дж}{Vr}$.

2. «Прав ли Галилей?»

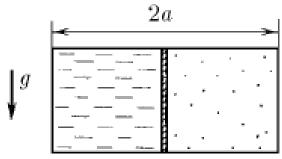

Проводя эксперимент с разными шариками, сделанными примерно из одного сплава, спускающимися с нулевой начальной скоростью с жестяного жёлоба, Костя заметил, что разные шарики скатывались с разными ускорениями. Он решил, что ему дали просто «плохое оборудование», ведь Галилей, который спускал шарики с наклонной плоскости, всякий раз получал одно и то же ускорение. Рассчитайте ускорения шариков. Исходя из данных таблицы, покажите, как меняется ускорение шариков в зависимости от их массы. Как должно, теоретически, зависеть от массы шариков их ускорение? Предположите, почему такой результат получился в опыте?

Момент инерции шара определяется по формуле $I = 0.4mR^2$.

m_1 , г	<i>S</i> ₁ , CM	t_1 , c	m ₂ , г	S_2 , CM	t ₂ , c	m_3 , г	S_3 , CM	<i>t</i> ₃ , c
17	9	0,5	66	12	0,5	131	13	0,5
	35	1,0		43	1,0		49	1,0
	70	1,5		83	1,5		86	1,5
	120	2,0		141	2,0		150	2,0


3. «И снова нелинейные элементы»

В цепь присоединён нелинейный элемент (диод), вольт-амперная характеристика которого показана на графике. Считая конденсатор изначально незаряженным, найдите количество теплоты, которое выделится на сопротивлении после замыкания цепи. Электроёмкость конденсатора равна C, ЭДС источника равна ε , сопротивление резистора R, напряжение, при котором диод открывается, равно U_0 .


4. «Экспериментатор Федя»

Экспериментатор Федя взял чашу от электрометра и через амперметр заземлил. Затем направил на эту чашу поток заряженных частиц. Считая поток частиц однородным, показания амперметра равными I, а чашу — полусферой, найдите распределение поверхностных токов на чаше. Радиус полусферы считать равным a. Во сколько раз изменятся показания амперметра, если радиус сферы увеличить вдвое?

5. «Смещение поршня»

В прямоугольном сосуде с непроницаемыми стенками находится слева тяжёлая жидкость, отделённая подвижным тонким поршнем от воздуха в правой части сосуда. В начальный момент поршень находится в равновесии и делит объём сосуда пополам. На сколько сместится поршень вправо, если температура системы уменьшится в четыре раза? Тепловым расширением ртути и стенок сосуда пренебречь. Тепловым сжатием ртути и стенок сосуда пренебречь. Испарением ртути пренебречь. Трения нет. Длина сосуда 2а.

