Муниципальный этап, 2024

Всероссийская олимпиада школьников по ФИЗИКЕ

Муниципальный этап

11 класс

Инструкция по выполнению работы Время выполнения работы — 230 мин

Внимательно прочитайте и решите задачи. При решении можно пользоваться непрограммируемым калькулятором. Все записи в бланке ответов выполняйте ручкой, работу оформляйте разборчивым почерком. Решения задач записывайте подробно. Не забудьте переписать решение с черновика в бланк ответов. Черновики не проверяются!

Максимальное количество баллов — 50

Желаем успеха!

Задача 11.1. Тело на клине.

С каким горизонтальным ускорением a нужно двигать клин, чтобы маленький брусок, находящийся на его поверхности (рис. 11.1), оставался относительно клина неподвижным? Угол при основании клина равен α (tg $\alpha=0.5$), коэффициент трения между бруском и поверхностью равен $\mu=0.2$. Сопротивление воздуха отсутствует. Ускорение свободного падения принять равным g=10 м/с².

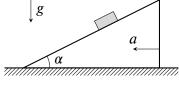
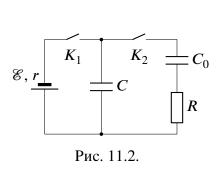


Рис. 11.1.


Задача 11.2. Сбалансированная зарядка.

В цепи, изображённой на рис. 11.2, оба ключа разомкнуты, а конденсаторы не заряжены. Сначала замыкают ключ K_1 , а затем, когда заряд на конденсаторе ёмкостью C станет равным $2C\mathscr{E}/3$, замыкают ключ K_2 . Определите сопротивление резистора R и ёмкость правого конденсатора C_0 , если после замыкания ключа K_2 токи через оба конденсатора одинаковы в каждый момент времени. Ёмкость левого конденсатора C, ЭДС батареи $\mathscr E$ и её внутреннее сопротивление r считайте известными.

Задача 11.3. Дуговой процесс.

Идеальный газ переходит из состояния A в состояние B в процессе, график которого изображён на рис. 11.3. В безразмерных координатах p/p_0 и T/T_0 , где p — давление газа, а T — его абсолютная температура, кривая AB представляет собой дугу окружности с центром на горизонтальной оси (в точке с абсциссой 5).

- 1. Определите минимальную и максимальную температуру в процессе AB, выразив их через параметр T_0 .
- 2. Найдите отношение максимального и минимального объёмов газа в процессе АВ.

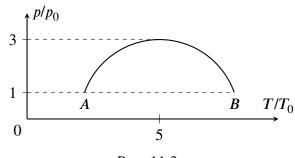


Рис. 11.3.

Задача 11.4. По материалам ЕГЭ.

Из начального положения, находящегося на высоте 3R/4 (см. рис. 11.4), по поверхности гладкой сферической полости радиуса R скользит маленькая шайба.

- 1. Определите полное ускорение шайбы в нижней точке полости.
- 2. Определите, на какой высоте h_1 относительно нижней точки полости полное ускорение шайбы равно по величине ускорению свободного падения g.
- 3. Определите, на какой высоте h_2 относительно нижней точки полости полное ускорение шайбы в процессе её движения будет минимальным.

Начальная скорость шайбы равна нулю. Сопротивление воздуха и трение отсутствует.

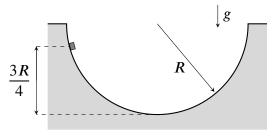


Рис. 11.4.

Задача 11.5. Полёты в полях.

Из ионной пушки Π с начальной скоростью v вылетают ионы и попадают в точку O на плоском экране \Im , находящемся на расстоянии L от пушки. Когда в пространстве между пушкой и экраном включили однородное электрическое поле напряжённостью E, направленное вдоль плоскости экрана, ионы стали попадать на экране в точку M (рис. 11.5а). Затем электрическое поле выключили и включили однородное магнитное поле индукции B, направленное параллельно экрану и перпендикулярно вектору \vec{E} (рис. 11.5б). Оказалось, что и в этом случае ионы попадают в точку M. Найдите скорость v, если расстояние OM = r. Плоскость экрана перпендикулярна вектору \vec{v} . Влиянием гравитации пренебречь.

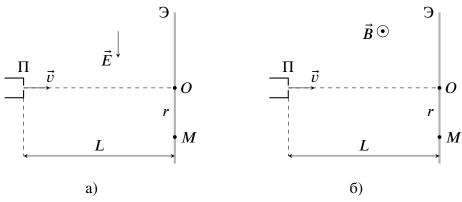


Рис. 11.5.