
## 1. «Соединение жгутов»

Пружины, жёсткость каждой из которых  $k=10\frac{\rm H}{\rm M}$ , соединены как показано на рисунке. С какой силой F нужно растягивать систему, чтобы точка приложения силы опустилась на  $\Delta x=10$  см? Пружины и стержни считать невесомыми.



## 2. «Блоки»

На данной системе блоков имеются грузы массами  $m_1$  и  $m_2$ . При каком соотношении их масс система будет находиться в равновесии? Нити и блоки невесомы, нити нерастяжимы, трения в осях блоков нет. Чему равна сила, действующая со стороны подвеса на верхний блок, если масса  $m_2$  известна, а масса  $m_1$  неизвестна? Куда направлена сила, действующая со стороны опоры на нижний блок?



## 3. «Что в сосуде?»

В теплоизолированный сосуд, в котором находится 300 г льда при температуре  $-10^{\circ}$ С, налили 50 г жидкого олова при температуре 232°С. Какая конечная температура установится в сосуде? Удельная теплоёмкость льда  $c_{\pi} = 2100 \frac{\Delta m}{\kappa \Gamma * {}^{\circ} C}$ , удельная теплоёмкость воды  $c_{\pi} = 4200 \frac{\Delta m}{\kappa \Gamma * {}^{\circ} C}$ , удельная теплоёмкость олова  $c_{\pi} = 230 \frac{\Delta m}{\kappa \Gamma * {}^{\circ} C}$ , удельная теплота плавления льда  $\lambda_{\pi} = 330000 \frac{\Delta m}{\kappa \Gamma}$ , удельная теплота плавления олова  $\lambda_{\pi} = 59000 \frac{\Delta m}{\kappa \Gamma}$ , температура плавления льда равна 0°С, температура плавления олова равна 232°С.

## 4. «Просто добавь фундука»

Коля взял две плитки горького шоколада массой по  $m_1=100~\mathrm{r}$  и  $m_2=40~\mathrm{r}$  соответственно и расплавил. Одну плитку он вылил в кубическую форму, а вторую вылил в шарообразную форму и положил туда несколько ядер фундука. Найдите плотность шоколада, если массы обеих шоколадок, в итоге, стали равны  $m_1=100~\mathrm{r}$  и  $m'_2=44~\mathrm{r}$ , а формы оказались заполнены полностью. Ребро кубической формы и диаметр шарообразной формы одинаковы. Объём шара равен  $V=\frac{4}{3}\pi R^3$ , где R – радиус шара. Плотность фундука равна  $\rho_{\varphi}=0.4\frac{\mathrm{r}}{\mathrm{cm}^3}$ .