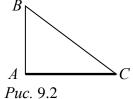

УСЛОВИЯ ЗАДАЧ ДЛЯ ІХ КЛАССА

- $9.1.\ «Теория относительности».$ Моторная лодка стартует от берега по реке и практически сразу движется с постоянной относительно воды скоростью. Сперва лодка движется к противоположному берегу перпендикулярно течению реки и за $t_1=10$ с проходит относительно воды путь $S_1=50$ м. Затем лодка в течение времени $t_2=20$ с движется строго по течению реки, а после этого время $t_3=30$ с по направлению к противоположному берегу так, чтобы её не сносило течением. Зная, что скорость течения реки везде одинакова и равна u=2 м/с, определите:
 - 1) среднюю скорость движения лодки относительно воды на всём пути;
 - 2) пройденный лодкой путь относительно воды;
 - 3) пройденный лодкой путь относительно берега.
 - 9.2. «Равновесие». На электронных весах расположен равноплечий однородный

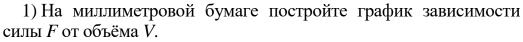

рычаг массой M=1 кг и длиной L=1 м, при этом один край рычага может опираться на стопку книг, сохраняя при этом почти горизонтальное положение. На левый (ближний к книгам) край рычага поставили груз массой $m_1=500$ г, а на середину правой части рычага — груз массой m_2 (рис. 9.1). Считая массу опоры под рычагом равной нулю, определите:

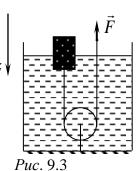
- 1) минимальную массу груза $m_{2\min}$, при которой рычаг сможет оторваться от книг;
- 2) какую массу покажут электронные весы, если второй груз будет иметь массу $m_2 = 300 \ \Gamma$?
 - 3) Какую массу покажут весы, если груз m_2 будет перенесён на середину рычага?
- 4) На какое расстояние относительно точки опоры следовало бы переместить рычаг, чтобы он перестал действовать на книги, но находился в равновесии после того, как груз m_2 будет снят с рычага?
- 9.3. «Жидкая смесь». На заводе для изготовления некоторой смеси в смесительный бак по двум трубам одинакового сечения S подаются два жидких вещества с плотностями $\rho_1 = 1,2$ г/см² и $\rho_2 = 1,6$ г/см². Первое вещество подается по трубе со скоростью $v_1 = 0,6$ см/с, второе $-v_2 = 0,4$ см/с. После попадания в смесительный бак вещества перемешиваются и вытекают по третьей трубе, при этом суммарная масса вещества в баке остаётся постоянной. Определите:
 - 1) среднюю плотность смеси в смесительном баке;
 - 2) скорость движения полученной смеси из смесительного бака по трубе сечением 3S. *Примечание*: в процессе смешивания пустот и полостей не образуется.
- 9.4. «Тепло в стакане». В первом стакане находится $m_1 = 150$ г воды при температуре $t_1 = 60$ °C, во втором $m_2 = 100$ г воды при температуре $t_2 = 20$ °C. Воду начали переливать из одного стакана в другой и обратно до тех пор, пока во втором стакане не оказалась прежняя масса воды при температуре $t_3 = 35$ °C.
 - 1) Какой при этом будет температура воды t_4 в первом стакане?
 - 2) Какой станет температура воды t_5 , если всю воду перельют в первый стакан?

Удельная теплоёмкость воды $c_s = 4200 \, \text{Дж/(кг} \cdot ^{\circ}\text{C})$. Теплопотерями и теплоёмкостью стаканов пренебречь.

9.5. *«Треугольное соединение»*. Из трёх прямых металлических проволок с одинаковым удельным сопротивлением спаяли прямоугольный треугольник, как показано на рис. 9.2. Известно, что сопротивления

угольник, как показано на рис. 9.2. Известно, что сопротивления кусков проволоки AB и BC равны $R_{AB}=3$ Ом и $R_{AC}=2$ Ом соответственно.


1) Каково сопротивление куска проволоки BC, если площади поперечного сечения проволок AB, BC и AC связаны соотношением $S_{AB} = S_{BC} = S_{AC}/2$?


2) Вершины треугольника B и C подключили к источнику тока с напряжением 5 В. Определите силу тока через каждую из проволок.

Сопротивлением мест спайки проводов пренебречь.

 $9.6. \ll Погружение \gg$. Тело в форме прямоугольного параллелепипеда погружают в воду при помощи системы, изображенной на рис. 9.3. В таблице приведена зависимость силы F, прикладываемой ко второму концу невесомой нити, от объёма V погружённой части тела. Отсчёты сделаны через равные промежутки времени.

F, H					20		
V , дм 3	3,4	3,8	4,2	4,6	5,0	5,0	5,0

2) Используя построенный график, определите массу и плотность тела. *Примечание*: плотность воды считать известной и равной $\rho = 1000$ кг/м³.