Муниципальный этап всероссийской олимпиады школьников по физике в 2024/25 учебном году

9 КЛАСС

Задача 1. Спортсмен бежит по стадиону четыре круга. В конце забега тренер сообщил, что три круга спортсмен пробежал со скоростью большей на $\Delta v = 11$ км/ч, чем средняя скорость на всем пути, а оставшуюся часть пути он пробежал со скоростью на Δv меньшей, чем средняя. Найдите среднюю скорость спортсмена.

Задача 2. В двухлитровом электрическом чайнике вода закипает за 5 минут. Найдите кпд чайника, если известно, что вода и чайник имели начальную температуру 20 °C, мощность чайника 3 кВт. Плотность воды принять равной 1000 кг/м3, удельная теплоемкость воды $c = 4200 \, \text{Дж/}$ (кг·° C), теплоемкость чайника $C = 2500 \, \text{Дж/}$ °C.

Задача 3. Автомобиль начал движение из состояния покоя. Первую секунду он двигался с ускорением, которое изменялась по закону $a = k \cdot t$. После первой секунду ускорение достигло постоянной величины $a_I = 6 \text{ m/c}^2$, и далее автомобиль двигался уже с этим ускорение еще $t_2 = 3$ секунды. Найдите скорость автомобиля через 4 секунды после начала движения.

Задача 4. В сообщающиеся сосуды с разными по диаметру цилиндрами налили 4 литра ртути ($\rho = 13600 \text{ кг/м}^3$). В узкий сосуд (площадь его сечения в два раза меньше, чем у второго сосуда) поместили цилиндр массой m=25 кг (плотность материала 9000 кг/м^3). Помещенный цилиндр имеет диаметр приблизительно равный диаметру сосуда (между цилиндром и стенками имеется незначительное расстояние). Найти как изменился уровень жидкости в широком сосуде, площадь сечения которого $S_2=100 \text{ см}^2$.

Задача 5. Профессор Глюк поселился в «умном доме». Система дома позволяет измерять температуру на улице и внутри дома, а так же представляет данные о мощности электронагревателей в системе отопления. Через сутки он посмотрел данные (см. таблицу).

t, ч	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Tin, C	20	20	20	20	20	20	20	20	20	21	21	22	23	23	23	23	23	23	23	22	22	21	21	20	20
Tout, C	2	2	2	2	2	2	2	3	4	5	6	7	8	8	8	8	8	8	7	6	5	4	3	2	2
Р, кВт	3,60	3,60	3,60	3,60	3,60	3,60	3,60	3,50	3,30	3,30	3,10	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,10	3,10	3,30	3,30	3,50	3,50	3,60

По полученным данным Глюк вычислил стоимость отопления за месяц (количество дней в месяце - 30) при условии, что среднесуточная температура внутри дома не изменятся, а по данным Метеоцентра ожидаемая средняя температура в этом месяце 2°С Какие значения получил профессор, если стоимость 1кВт*ч электроэнергии составляет 6 рублей? Какая будет стоимость отопления за месяц, если с 00 часов до 6 утра держать температуру в доме 18 °С, а в остальные часы 21°С?