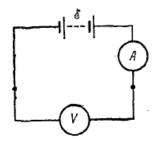

1. В эксперименте по измерению ускорения, с которым скатывается шарик диаметром d=3,2 см с наклонной плоскости, было измерено несколько значений пути и времени. Они показаны в таблице S(t). Шарик старались отпускать с нулевой начальной скоростью. Ускорение, с которым должен скатываться шарик, теоретически, определеяется по формуле $a=\frac{g}{1,4}*sin\alpha$. По этим данным, пренебрегая трением качения, определите уклон наклонной плоскости и угловую скорость вращения шарика через 5 с после начала движения шарика с данным ускорением.


Уклон — синус угла наклона плоскости. Пройденным путём считается путь, пройденный центром шарика. $g = 9.8 \frac{M}{c^2}$. Проскальзывания нет.

S, см	12,0	3,5	45,5	16,0	24,5
t, c	0,7	0,4	1,4	0,8	1,0

2. «Переделанная схема»

Если включить амперметр и вольтметр так, как показано на схеме слева, то их показания будут равны 0,10 A и 50 В соответственно. Определите показания вольтметра и амперметра в схеме, если их подключить последовательно с батареей, как показано на схеме справа. Сопротивления резисторов равны 400 Ом и 600 Ом, батарея выдаёт в цепь напряжение 60 В в обоих случаях.

3. «Стрельба по тарелочкам»

Кеша пришёл на стрельбище и решил попробовать сбивать из рогатки тарелочки, которые со скоростью $v=20\frac{\rm M}{\rm c}$ выбрасываются автоматическим устройством под углом $\alpha=30^{\circ}$. С какой скоростью и в каком направлении должен стрелять Кеша, чтобы попасть в тарелочку? Расстояние между Кешей и устройством равно L=200 м. Максимальная скорость снаряда рогатки равна $v_1=120\frac{\rm M}{\rm c}$, стрелять Кеша умеет во всех направлениях.

4. «Случай на производстве»

На производстве раскалённая железная деталь падает в воду массой $m_2=10~\rm kr$ и температурой $t_2=20\rm °C$. Масса детали равна $m_1=400~\rm r$, а равна $t_1=500\rm °C$. Какой оказалась температура воды и детали, если $m_3=20~\rm r$ воды испарилось? Удельная теплоёмкость железа $c_1=450~\frac{\rm J/m}{\rm kr/s^{\circ}C}$, удельная теплоёмкость воды $c_2=4200~\frac{\rm J/m}{\rm kr/s^{\circ}C}$, теплоёмкостью сосуда пренебречь, удельная теплота парообразования воды равна $L=2,3~\frac{\rm MJ/m}{\rm kr}$, температура кипения воды равна $t_3=100\rm °C$. Теплопотерями пренебречь.

5. «Сообщающиеся сосуды»

Два вертикальных сосуда разной площади поперечного сечения S_1 и S_2 соответственно соединили тонкой трубкой у дна. В сосуды налили воду, а после установления равновесия сосуд S_1 подключили к насосу и уменьшили давление воздуха над столбом жидкости в нём на Δp . На сколько при этом изменятся уровни воды в каждом сосуде? Плотность воды равна ρ , ускорение свободного падения равно g.