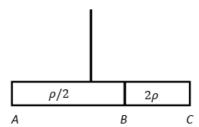
ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ФИЗИКЕ 2024-2025 УЧЕБНЫЙ ГОД. МУНИЦИПАЛЬНЫЙ ЭТАП. 9 КЛАСС.

БЛАНК ЗАДАНИЙ

Время выполнения работы – 230 минут. Максимальное кол-во баллов – 50.

ЗАДАЧА №1. (Максимальное количество баллов за задание – 10)

Два тела начинают движение из состояния покоя. Первое тело движется равномерно со скоростью $v_1 = 36$ км/ч, второе – равноускоренно с ускорением $a_2 = 1$ м/с². Определите:


<u>Вопрос №1.</u> Через какое время t_1 после начала движения скорости тел станут равны. <u>Вопрос №2.</u> Через какое время t_2 после начала движения пути, пройденные телами, будут отличаться в 2 раза.

Вопрос №3. Среднюю путевую скорость второго тела в момент времени t_2 .

<u>Вопрос №4.</u> Среднюю скорость второго тела на всём участке, где средние скорости тел, вычисленные с момента начала движения, будут отличаться менее, чем в 4 раза?

ЗАДАЧА №2. (Максимальное количество баллов за задание – 10)

Цилиндрический стержень длиной L=50 см, состоящий из двух частей разной плотности, висит на нити горизонтально. Часть AB стержня длиной 4/5L состоит из материала плотностью $\rho/2$. Оставшаяся часть стержня BC состоит из материала плотностью 2ρ . Радиусы обеих частей стержня одинаковы.

Вопрос №1. На каком расстоянии *х* от левого конца стержня АВ закреплена нить?

Вопрос №2. Стержень погружают в жидкость плотностью. Сможет ли он плавать в жидкости, если нить никуда не тянуть?

Вопрос №3. Найдите, на каком новом расстоянии от левого конца стержня AB должна быть закреплена нить, чтобы стержень был полностью погружен в жидкость плотностью ρ и располагался горизонтально. В какую сторону (вверх или вниз) ее нужно тянуть.

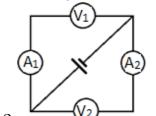
ЗАДАЧА №3. (Максимальное количество баллов за задание – 10)

Для изготовления лекарства больному необходимо медленно смешивать его в определенных пропорциях с физиологическим раствором при строго определенном температурном режиме.

В медицинский стакан емкостью 260 мл медсестра наливает доверху лекарство при температуре 27°С. Оказалось, что стакан с лекарством остывает на 2°С за одиннадцать минут. Для того, чтобы поддерживать температуру постоянной, она капает в стакан теплый физиологический раствор температурой 55°С. Известно, что объём одной капли равен 0,2 мл.

<u>Вопрос №1.</u> Сколько капель в минуту необходимо ей капать, чтобы поддерживать температуру в стакане неизменной?

<u>Вопрос №2.</u> С какой частотой (капель в минуту) нужно капать физраствор, чтобы температура содержимого стакана увеличивалась на 0,5°С в минуту?


Считать теплоемкость и плотность лекарства равной теплоемкости и плотности обычной воды. Удельная теплоемкость физраствора $3900~\rm{Дж/кг^{.o}C}$, плотность $1010~\rm{kr/m^3}$. Лишнее лекарство выливается из носика стакана, а физраствор оседает на дне стакана.

ЗАДАЧА №4. (Максимальное количество баллов за задание – 10)

Схема состоит из двух разных амперметров и двух одинаковых вольтметров. Источник тока создаёт напряжение 20 В. Первый амперметр показывает силу тока 20 мА, первый вольтметр показывает напряжение 18 В, второй амперметр показывает силу тока 16 мА.

Вопрос №1. Какое напряжение покажет второй вольтметр?

Вопрос №2. Каковы сопротивления первого и второго амперметров?

ЗАДАЧА №5. (Максимальное количество баллов за задание – 10) Оборудование:

Лист бумаги формата А4 с напечатанным прямоугольником в клетку, ножницы, кусок нити, гайка.

Клетки внутри прямоугольника являются квадратными с размерами 5 х 5 мм. Поверхностная плотность бумаги (отношение массы бумаги к площади ее поверхности) равна $\sigma = 80 \; \Gamma/\text{cm}^2$.

Вопрос №1. Определите размеры (ширину и длину в сантиметрах) выданного вам листа, на котором напечатан прямоугольник в клетку.

Вопрос №2. Определите массу выданной вам гайки.

ВАЖНО!!! При решении задачи можно использовать только указанное в задаче оборудование. Если вы будете использовать оборудование, отсутствующие в списке, то ваше решение будет оценено в ноль баллов. При оформлении решения опишите какие опыты вы выполняли, как выглядела ваша установка, приведите измерения, необходимые формулы и результаты расчетов. Выданный вам лист вы можете использовать, как угодно, в том числе резать его, делать на нем пометки и т.д., **НО** помните, что новый лист вам не выдадут!

Часть оборудования к задаче №5 девятого класса в <u>Приложении №1.</u>