
9 класс. Условия.

- **9-1.** Ехавший со скоростью v_0 товарный поезд, когда его локомотив миновал первую станцию и начал разгон с некоторым постоянным ускорением. С какой скоростью хвостовой вагон поезда проедет мимо следующей по пути следования станции? Времена прохождения перегона между первой и второй станциями для локомотива и хвостового вагона отличаются в два раза, а расстояние между этими станциями равно длине поезда. Длина каждого вагона мала по сравнению с длиной всего состава.
- **9-2.** Рыболовецкую платформу закрепили с помощью троса длиной ℓ_1 на якоре. Глубина моря под платформой равна h, однако поверхностное течение настолько сильное, что платформа погрузилась в воду практически полностью. После того, как после того, как на платформу была поставлена первая бочка с уловом пришлось увеличить длину якорного троса до ℓ_2 . Какое максимальное количество одинаковых бочек сможет выдержать платформа если масса каждой бочки примерно равна массе платформы?
- **9-3.** При подключении к источнику тока последовательно соединенных k одинаковых резисторов на них выделится такая же мощность P как при подключении к этому источнику одного такого резистора. Какая мощность выделится на k параллельно подключенных резисторах?
- **9-4.** Для измерения сопротивления резистора R собрана схема из батарейки, амперметра и вольтметра (см. рисунок). Вольтметр подключён параллельно резистору и показывает $U_1 = 1$ B, амперметр подключён к ним последовательно и показывает $I_1 = 1$ A. После того, как приборы в схеме поменяли

местами, вольтметр стал показывать $U_2 = 2~B$, а амперметр $I_2 = 0.5~A$. Считая батарейку идеальной, определите по этим данным сопротивления резистора, амперметра и вольтметра.

9-5. Участники сентябрьской смены в образовательном центре "Импульс" на занятии вскипятили воду в чайнике и затем оставили её охлаждаться, сняв зависимость температуры t воды в чайнике от времени остывания τ , которая представлена в таблице. Полагая, что мощность тепловых потерь пропорциональна разности температур воды в чайнике t и в лаборатории $N = k(t-t_0)$, где t_0 — температура окружающего воздуха, а k - коэффициент теплоотдачи, построить график зависимости температуры t воды в чайнике от времени τ . Используя график зависимости $t(\tau)$, определить температуру t_0 воздуха в лаборатории и коэффициент теплоотдачи k. Масса воды в чайнике m=1,5 кг, удельная теплоёмкость воды c=4,2 кДж/(кг·К). Теплоёмкостью чайника и испарением воды пренебречь

t, °C	100	90	80	70	60	50	40	30	25	22	21	20	20
τ,	0	1	2	2,8	4,6	6	9	13	22	26	30	35	40
МИН													