Всероссийская олимпиада школьников

Муниципальный этап
Астрономия, 2020 год
9 классы
Критерии проверки
Все задания по 8 баллов

Задание 1 (8 баллов)

Великий немецкий ученый Иоганн Кеплер после многолетних вычислений установил, что:

$$\frac{T^2}{a^3} = K,$$

где *T* — период обращения, какого-либо тела Солнечной системы, вокруг Солнца, *a* - большая полуось орбиты этого тела (среднее расстояние от тела до Солнца), *K*- константа для всех тел Солнечной системы (постоянная Кеплера). Определите постоянную Кеплера, исходя из параметров любой известной Вам планеты, после чего посчитайте большую полуось кометы, период обращения, которой составляет 75 лет.

Решение:

Определим постоянную Кеплера, исходя из параметров для Земли (T = 1 год, a = 1 a.e.)

$$K = \frac{1^2}{1^3} = 1 \frac{\text{год}^2}{a.\,e.^3} = 2,97 \cdot 10^{-19} \frac{\text{c}^2}{\text{m}^3} = \cdots -$$
влюбыхдругихединицахизмерния

Посчитаем параметры кометы:

$$K = \frac{75^2}{a^3} = 1 \frac{\text{лет}^2}{a \cdot e^3}$$

Следовательно, большая полуось кометы равна

$$a = \left(\frac{75^2}{K}\right)^{\frac{1}{3}} = (75^2)^{\frac{1}{3}} = 17,78a.\,e. = 2,7 \cdot 10^9$$
км

Ориентировочные критерии оценивания:

- 3 балла за правильное определение постоянной Кеплера, в любых единицах измерения.
- 2 балла за вывод формулы для расчета большой полуоси кометы.
- 3 балла за правильный расчет большой полуоси кометы, в любых единицах измерения.

Задание 2 (8 баллов)

Облако Оорта — гипотетическая сферическая область Солнечной системы, служащая источником долгопериодических комет. Предполагаемые границы облака лежат в пределах от 50 000 до 100 000 а. е. (1 а.е. = 149 млн. км). Рассчитайте концентрацию тел (количество объектов в объеме пространства) в

облаке Оорта, в предположении, что оно содержит 10¹⁵ объектов, равномерно распределённых Объем сферы облаку. радиуса *R* рассчитывается следующим образом:

$$V = \frac{4}{3}\pi \cdot R^3$$

Решение:

Определим объем облака Оорта:

$$V_{\text{Оорта}} = V(100000a.e.) - V(50000a.e.) = \frac{4}{3}\pi \cdot 50000^3 - \frac{4}{3}\pi \cdot 100000^3 = \frac{4}{3}\pi \cdot (50000^3 - 100000^3) = 3,67 \cdot 10^{15}a.e.^3$$

Далее определим концентрацию объектов в облаке Оорта:

$$n = \frac{N}{V_{\text{Оорта}}} = \frac{10^{15}}{3,67 \cdot 10^{15}} = 0,27$$
объектана $a.\,e.^3$

Ориентировочные критерии оценивания:

- 2 балла за правильный вывод формулы для расчета объема облака Оорта.
- 1 балл за правильный расчет объема облака Оорта, в любых единицах измерения.
- 2 балла за правильную запись формулы для определения концентрации объектов.
- 3 балла за правильный численный ответ.

В случае если объем облака Оорта определяется по наибольшему, наименьшему или среднему расстоянию, и правильно (для полученного объема) определяется концентрация, то за задачу выставляется максимум 4 балла.

Задание 3 (8 баллов)

Синодический период (S) — промежуток времени между двумя последовательными одноимёнными лунными фазами. Синодический период можно определить по формуле

$$\frac{1}{S} = \frac{1}{T_{\square}} - \frac{1}{T_{\bigoplus}}$$

30 ноября 2020 года можно было наблюдать полнолуние, когда можно будет увидеть следующее полнолуние если известно, что период обращения Луны Т вокруг Земли равен 27,32 суток и если известен период обращения Земли вокруг Солнца Т□?

Решение:

Из справочника $T_{\square}=365,\!26$ суток. Преобразовываем формулу для S: $S=\frac{T_{\bigoplus}\cdot T_{\boxtimes}}{T_{\bigoplus}-T_{\boxtimes}}$

$$S = \frac{T_{\bigoplus} \cdot T_{\square}}{T_{\bigoplus} - T_{\square}}$$

После подстановки значений получаем, что S = 29.53. Значит дата следующего полнолуния 29-30 декабря 2020 года.

Ориентировочные критерии оценивания:

2 балла за преобразование формулы к расчетному виду.

- 3 балла за правильный расчет синодического периода.
- 3 балла за правильное определение даты следующего полнолуния.

Задание 4 (8 баллов)

Найти давление атмосферы на Венере, если масса венерианской атмосферы равна $4.8 \cdot 10^{20}$ кг. Площадь поверхности планеты можно рассчитать по формуле $S = 4\pi R^2$, где R - радиус планеты.

Решение:

Ускорение свободного падения на поверхности планеты массы M и радиусом R равно

$$g = \frac{GM}{R^2}$$

для Венеры эта величина равна 8.88 м/c^2 . Давление атмосферы можно найти, разделив силу тяжести, действующую на атмосферу, на площадь поверхности планеты:

$$p = \frac{m_a g}{4\pi R^2} \approx 9.3 \cdot 10^6 \Pi a$$

т.е., давление в 93 раза больше земного.

Ориентировочные критерии оценивания:

- 2 балла за вычисление ускорение свободного падения на Венере.
- 4 баллов за формулу для давления.
- 2 балла за правильный ответ.

<u>Задание 5 (8 баллов)</u>

Вокруг некоторой звезды обращается планета с луной, размеры которой совпадают с размерами земной Луны. Радиус орбиты луны равен 800000 км. Известно, что круговая скорость планеты на орбите в 20 раз меньше первой космической скорости на поверхности звезды. Могут ли наблюдаться полные затмения луной звезды в такой системе? Считать, что луна вращается вокруг планеты в той же плоскости, что и планета вокруг звезды.

Решение:

Полные затмения будут возможны, если угловой размер луны будет больше углового размера звезды. Угловой размер луны при наблюдении с планеты легко оценить, зная, что радиус луны равен 1737 км:

$$\alpha = \frac{1737}{800000} = 0.0022$$

Угловой размер звезды равен

$$\beta = \frac{R}{L},$$

где R и L - неизвестные нам радиус звезды и расстояние от планеты до звезды. Но эти величины входят в выражения для первой космической скорости на поверхности звезды и круговой скорости планеты:

$$v_1 = \sqrt{\frac{GM}{R}},$$

$$v_\circ = \sqrt{\frac{GM}{L}},$$

По условию:

$$\frac{v_{\circ}}{v_{1}} = \frac{1}{20},$$

$$\sqrt{\frac{R}{L}} = 0.05,$$

$$\frac{R}{L} = 0.0025,$$

Видим, что этот угол больше первого, поэтому полного покрытия диска звезды быть не может.

Ориентировочные критерии оценивания:

- 2 балла за расчет углового размера Луны.
- 2 балла за формулы для скоростей.
- 3 балла за вывод формулы для углового размера звезды через космические скорости.
- 1 балл за окончательный вывод.

Задание 6 (8 баллов)

Вокруг некоторой звезды обращается планета по круговой орбите. При наблюдении с планеты угловой радиус звезды в два раза больше, чем угловой диаметр Солнца (16 угловых минут) при наблюдении с Земли. Звезда в 2 раза тяжелее Солнца. Год для обитателей этой планеты длится в 1.5 раза дольше земного. Найдите размер звезды.

Решение:

Пусть M - масса звезды, R - расстояние от звезды до планеты (радиус орбиты). Известно, что круговая скорость обращения по орбите радиуса R составляет

$$v = \sqrt{\frac{GM}{R}}$$

Период обращения найдем, разделив путь планеты на скорость:

$$T = \frac{2\pi R}{v} = \frac{2\pi R^{3/2}}{\sqrt{GM}}$$

По условию период известен и составляет 1.5 года. Масса звезды также известна, поэтому можно найти радиус звезды:

$$R = \left(\frac{CMT^2}{4\pi^2}\right)^{1/3}$$

Угловой радиус звезды при наблюдении с планеты равен и составляет по

условию 32 угловых минуты.

$$\beta = \frac{r}{R}$$

Отсюда найдем радиус звезды:

$$r = \beta \left(\frac{CMT^2}{4\pi^2}\right)^{1/3}$$

Подстановка числовых значений дает $2.35 \cdot 10^9 \text{ м} = 2.35 \text{ млн. км.}$

Ориентировочные критерии оценивания:

- 2 балла за формулу для периода через массу и радиус планеты.
- 3 балла за нахождение радиуса звезды.
- 3 балла за правильный расчет большой полуоси кометы, в любых единицах измерения.