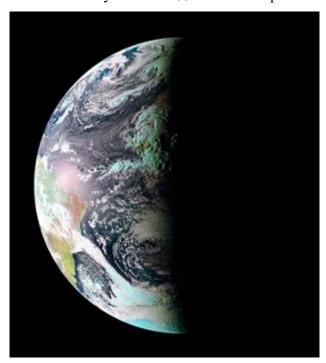
Разбор заданий школьного этапа ВсОШ по астрономии для 10 класса


2022/23 учебный год

Максимальное количество баллов — 100

Задание № 1

Условие:

Может ли с Луны наблюдаться такая фаза Земли?

- о Может (Луна при этом будет стареющей)
- о Может (Луна при этом будет растущей)
- о Может (Луна при этом будет в полнолунии)
- о Может (Луна при этом будет в новолунии)
- о Не может

Задание № 2

Условие:

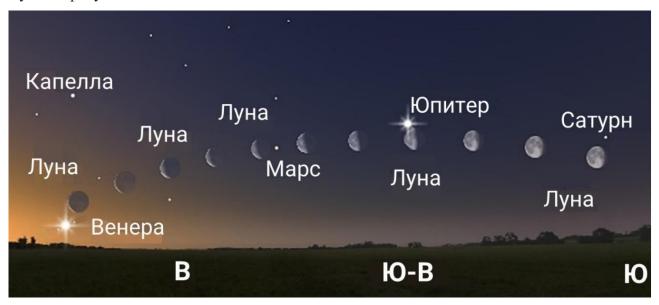
Выберите прямые (т.е. не требующие каких-либо знаний о природе объекта) методы определения расстояния в астрономии:

- о Лазерная локация
- о Метод годичного параллакса
- о Метод горизонтального параллакса
- о Радиолокация
- о «Стандартная свеча» (по видимой яркости объектов известного типа)
- о Метод «черпков»

Задание № 3

Условие:

В настоящее время Полярная звезда отстоит от полюса Мира примерно на 50 угловых минут. За какое время она делает один полный оборот вокруг полюса Мира?


- 50 минут
- о Солнечные сутки
- о Звёздные сутки
- о Солнечный год
- о Звёздный год

Задание № 4.1

Общее условие:

На рисунке показаны положения Луны на небе в некоторый отрезок времени для средних широт Северного полушария Земли.

Известно, что самое левое её изображение соответствует 20 числу некоторого месяца. Размер Луны на рисунке дан не в масштабе.

Условие:

Какого числа наблюдалось соединение Луны с Юпитером?

- о 12 числа предыдущего месяца
- о 11-12 числа этого же месяца
- о 12–13 числа этого же месяца
- о 13–14 числа этого же месяца
- о 14–15 числа этого же месяца
- о 15–16 числа этого же месяца
- о 26-27 числа этого месяца
- о 12 числа следующего месяца

Условие:

Какому сезону соответствует рисунок?

Варианты ответов:

- о Весна
- о Лето
- о Осень
- о Зима
- о Недостаточно данных

Условие:

В это время в верхней кульминации Луна в полной фазе была...

- о выше относительно горизонта, чем в фазе новолуния
- о ниже относительно горизонта, чем в фазе новолуния
- о на той же высоте, что и в фазе новолуния
- о Недостаточно данных

Общее условие:

На рисунке показаны положения Луны на небе в некоторый отрезок времени для средних широт Северного полушария Земли. Известно, что самое левое её изображение соответствует 14 числу некоторого месяца. Размер Луны на рисунке дан не в масштабе.

Условие:

Какого числа наблюдалось соединение Луны с Юпитером?

- о 8 числа предыдущего месяца
- о 5-6 числа этого же месяца
- о 6–7 числа этого же месяца
- 7-8 числа этого же месяца
- о 8-9 числа этого же месяца
- 9–10 числа этого же месяца
- о 20–21 числа этого же месяца
- о 8 числа следующего месяца

Условие:

Какому сезону соответствует рисунок?

Варианты ответов:

- о Весна
- о Лето
- о Осень
- о Зима
- о Недостаточно данных

Условие:

В это время в верхней кульминации Луна в полной фазе была...

- о выше относительно горизонта, чем в фазе новолуния
- о ниже относительно горизонта, чем в фазе новолуния
- о на той же высоте, что и в фазе новолуния
- о Недостаточно данных

Общее условие:

На рисунке показаны положения Луны на небе в некоторый отрезок времени для средних широт Северного полушария Земли. Известно, что самое левое её изображение соответствует 10 числу некоторого месяца. Размер Луны на рисунке дан не в масштабе.

Условие:

Какого числа наблюдалось соединение Луны с Юпитером?

- о 4 числа предыдущего месяца
- о 1–2 числа этого же месяца
- 2–3 числа этого же месяца
- о 3–4 числа этого же месяца
- о 4–5 числа этого же месяца
- о 5-6 числа этого же месяца
- о 16–17 числа этого же месяца
- о 4 числа следующего месяца

Условие:

Какому сезону соответствует рисунок?

Варианты ответов:

- о Весна
- о Лето
- о Осень
- о Зима
- о Недостаточно данных

Условие:

В это время в верхней кульминации Луна в полной фазе была...

- о выше относительно горизонта, чем в фазе новолуния
- о ниже относительно горизонта, чем в фазе новолуния
- о на той же высоте, что и в фазе новолуния
- о Недостаточно данных

Задание № 5.1

Общее условие:

В системе Сола жители планеты Земы проводят радиолокацию ближайшей планеты в момент наибольшего сближения с ней.

Планета	Большая полуось орбиты, млн км
о Мер	o 20
о Вена	o 70
о Зема	o 100
o Map	o 160
о Юп	o 720
о Сат	o 2600
о Ур	o 13500
о Неп	o 24700

Условие:

В какой конфигурации для жителей Земы находится исследуемая планета в этот момент?

Варианты ответов:

- о Противостояние
- о Верхнее соединение
- о Нижнее соединение
- о Максимальная элонгация
- о Квадратура

Условие:

Через сколько секунд к исследователям вернётся посланный радиолокатором сигнал? Орбиты всех планет круговые и лежат в одной плоскости. Скорость света равна 300000 км/с.

Задание № 5.2

Общее условие:

В системе Сола жители планеты Земы проводят радиолокацию ближайшей планеты в момент наибольшего сближения с ней.

Планета	Большая полуось орбиты, млн км
о Мер	o 20
о Вена	o 70
о Зема	o 100
о Мар	o 160
о Юп	o 720
о Сат	o 2600
о Ур	o 13500
о Неп	o 24700

Условие:

В какой конфигурации для жителей Земы находится исследуемая планета в этот момент?

Варианты ответов:

- о Противостояние
- о Верхнее соединение
- о Нижнее соединение
- о Максимальная элонгация
- о Квадратура

Условие:

Через сколько секунд к исследователям вернётся посланный радиолокатором сигнал? Орбиты всех планет круговые и лежат в одной плоскости. Скорость света равна 300000 км/с.

Задание № 5.3

Общее условие:

В системе Сола жители планеты Земы проводят радиолокацию ближайшей планеты в момент наибольшего сближения с ней.

Планета	Большая полуось орбиты, млн км
о Мер	o 20
о Вена	o 70
о Зема	o 100
o Map	o 160
о Юп	o 720
о Сат	o 2600
о Ур	o 13500
о Неп	o 24700

Условие:

В какой конфигурации для жителей Земы находится исследуемая планета в этот момент?

Варианты ответов:

- о Противостояние
- о Верхнее соединение
- о Нижнее соединение
- о Максимальная элонгация
- о Квадратура

Условие:

Через сколько секунд к исследователям вернётся посланный радиолокатором сигнал? Орбиты всех планет круговые и лежат в одной плоскости. Скорость света равна 300000 км/с.

Задание № 6.1

Общее условие:

Пассажир любит летать у окна. Летним утром 1990 года он вылетел из Москвы в Крым.

Условие:

На какой стороне ему надо сидеть, чтобы во время полёта не мешало Солнце?

Варианты ответов:

- о На правой (если смотреть в сторону кабины пилота)
- о На левой (если смотреть в сторону кабины пилота)
- о Солнце будет одинаково мешать пассажиру независимо от выбора стороны

Условие:

Полёт занял 2 часа. На какой угол переместилось Солнце по небесной сфере относительно горизонта? Ответ выразите в градусах.

Задание № 6.2

Общее условие:

Пассажир любит летать у окна. Летним утром 1990 года он вылетел из Москвы в Крым.

Условие:

На какой стороне ему надо сидеть, чтобы во время полёта не мешало Солнце?

Варианты ответов:

- о На правой (если смотреть в сторону кабины пилота)
- о На левой (если смотреть в сторону кабины пилота)
- о Солнце будет одинаково мешать пассажиру независимо от выбора стороны

Условие:

Полёт занял 3 часа. На какой угол переместилось Солнце по небесной сфере относительно горизонта? Ответ выразите в градусах.

Задание № 6.3

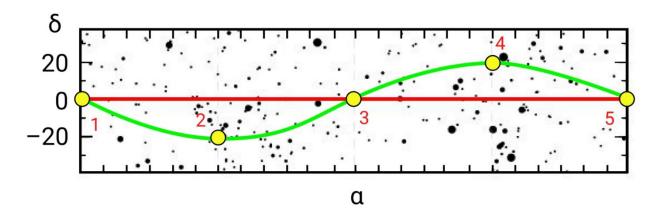
Общее условие:

Пассажир любит летать у окна. Летним утром 1990 года он вылетел из Москвы в Крым.

Условие:

На какой стороне ему надо сидеть, чтобы во время полёта не мешало Солнце?

Варианты ответов:


- о На правой (если смотреть в сторону кабины пилота)
- о На левой (если смотреть в сторону кабины пилота)
- о Солнце будет одинаково мешать пассажиру независимо от выбора стороны

Условие:

Полёт занял 4 часа. На какой угол переместилось Солнце по небесной сфере относительно горизонта? Ответ выразите в градусах.

Общее условие:

На приведённом фрагменте звёздной карты зелёной линией обозначена эклиптика.

Условие:

Сопоставьте отмеченные цифрами положения Солнца на эклиптике и даты, в которые оно может наблюдаться в соответствующей точке.

Варианты ответов:

о Положение 1	о Зимнее солнцестояние
о Положение 2	о Весеннее равноденствие
о Положение 3	
о Положение 4	о Летнее солнцестояние
о Положение 5	о Осеннее равноденствие

Условие:

Вычислите среднюю скорость изменения склонения Солнца между точками 3 и 4. Ответ выразите в угловых секундах/сутки.

Задание № 8.1

Условие:

Выразите расстояние в 5 световых лет в привычных нам метрических единицах. Скорость света равна $300000 \, \mathrm{km/c}$.

Варианты ответов:

- \circ 4.0 · 10¹⁶ M
- \circ 4.7 · 10¹⁶ M
- \circ 5.77 · 10¹⁶ M
- \circ 9.5 · 10¹⁵ M
- \circ 3.26 · 10¹³ км
- \circ 3.912 · 10¹⁶ M
- $\circ \quad 3.7 \cdot 10^{16} \ \text{M}$

Условие:

Выразите это расстояние в парсеках. Ответ округлите до десятых.

Задание № 8.2

Условие:

Выразите расстояние в 6 световых лет в привычных нам метрических единицах. Скорость света равна $300000 \, \mathrm{km/c}$.

Варианты ответов:

- \circ 4.0 · 10¹⁶ M
- \circ 5.6 · 10¹⁶ M
- \circ 6.87 · 10^{16} M
- \circ 9.5 · 10¹⁵ M
- \circ 3.26 · 10¹³ км
- \circ 3.912 · 10¹⁶ M
- $\circ \quad 3.7 \cdot 10^{16} \ \text{M}$

Условие:

Выразите это расстояние в парсеках. Ответ округлите до десятых.

Задание № 8.3

Условие:

Выразите расстояние в 4 световых лет в привычных нам метрических единицах. Скорость света равна $300000 \; \text{кm/c}$.

Варианты ответов:

- \circ 2.0 · 10¹⁶ M
- \circ 3.8 · 10¹⁶ M
- \circ 6.87 · 10^{16} M
- \circ 9.5 · 10¹⁵ M
- \circ 3.1 · 10¹³ км
- \circ 4.912 · 10¹⁶ M
- \circ 3.2 · 10¹⁶ M

Условие:

Выразите это расстояние в парсеках. Ответ округлите до десятых.

Задание № 9.1

Условие:

Некая звезда главной последовательности излучает $4\cdot 10^{25}$ Дж энергии за 1 секунду (эта величина называется светимостью). Светимость обеспечивается идущими внутри звезды термоядерными реакциями, в ходе которых водород преобразуется в гелий. При преобразовании 1 г водорода выделяется $6.3\cdot 10^{11}$ Дж энергии. За какое время израсходуется водород массой, равной массе Земли $(6\cdot 10^{24} \, {\rm kr})$? Ответ выразите в миллионах лет, округлите до десятых.

Задание № 9.2

Условие:

Некая звезда главной последовательности излучает $10^{25}\,\mathrm{Дж}$ энергии за 1 секунду (эта величина называется светимостью). Светимость обеспечивается идущими внутри звезды термоядерными реакциями, в ходе которых водород преобразуется в гелий. При преобразовании 1 г водорода выделяется $6.3\cdot10^{11}\,\mathrm{Дж}$ энергии. За какое время израсходуется водород массой, равной массе Земли $(6\cdot10^{24}\,\mathrm{kr})$? Ответ выразите в миллионах лет, округлите до целых.

Задание № 9.3

Условие:

Некая звезда главной последовательности излучает $2 \cdot 10^{25} \, \text{Дж}$ энергии за 1 секунду (эта величина называется светимостью). Светимость обеспечивается идущими внутри звезды термоядерными реакциями, в ходе которых водород преобразуется в гелий. При преобразовании 1 г водорода выделяется $6.3 \cdot 10^{11} \, \text{Дж}$ энергии. За какое время израсходуется водород массой, равной массе Земли ($6 \cdot 10^{24} \, \text{кг}$)? Ответ выразите в миллионах лет, округлите до десятых.

Задание № 10.1

Условие:

На планете Kepler-90 g наблюдатели (по примеру земных наблюдателей) ввели свой световой год. Известно, что период обращения планеты вокруг её звезды Kepler-90 — жёлтого карлика, похожего на Солнце — составляет 210.6 земных суток. Во сколько раз его величина отличается от светового года, используемого нами? Ответ округлите до сотых. При расчётах делите большее число на меньшее.

Задание № 10.2

Условие:

На планете Kepler-90 f наблюдатели (по примеру земных наблюдателей) ввели свой световой год. Известно, что период обращения планеты вокруг её звезды Kepler-90 — жёлтого карлика, похожего на Солнце — составляет 124.9 земных суток. Во сколько раз его величина отличается от светового года, используемого нами? Ответ округлите до сотых. При расчётах делите большее число на меньшее.

Задание № 10.3

Условие:

На планете Kepler-90 е наблюдатели (по примеру земных наблюдателей) ввели свой световой год. Известно, что период обращения планеты вокруг её звезды Kepler-90 — жёлтого карлика, похожего на Солнце — составляет 91.9 земных суток. Во сколько раз его величина отличается от светового года, используемого нами? Ответ округлите до сотых. При расчётах делите большее число на меньшее.