

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ 2023/24 гг. МУНИЦИПАЛЬНЫЙ ЭТАП АСТРОНОМИЯ 9 КЛАСС

МАТЕРИАЛЫ ДЛЯ ЧЛЕНОВ ЖЮРИ ВРЕМЯ ВЫПОЛНЕНИЯ ЗАДАНИЙ – 120 МИН. МАКСИМАЛЬНОЕ КОЛИЧЕСТВО БАЛЛОВ – 100

Оценивание заданий проводится по обобщенной шкале:

- 0 баллов решение отсутствует, абсолютно некорректно, или в нем допущена грубая астрономическая или физическая ошибка;
- 1 балл правильно угадан бинарный ответ («да» «нет») без обоснования;
- 1-2 балла попытка решения не принесла существенных продвижений, однако приведены содержательные астрономические или физические соображения, которые можно использовать при решении данного задания;
- 2-3 балла правильно угадан сложный ответ без обоснования или с неверным обоснованием;
- 3-6 баллов задание частично решено;
- 5-7 баллов задание решено полностью с некоторыми недочетами;
- 8- задание решено полностью;

Выставление премиальных баллов сверх максимальной оценки за задание не допускается.

Максимальная оценка — 48 баллов, итоговая оценка переводится в шкалу 100 баллов.

<mark>Алгоритм перевода</mark>

Итоговая оценка за выполнение заданий определяется путём сложения суммы баллов, набранных участником за выполнение заданий с последующим приведением к 100-балльной системе.

Максимальная оценка по итогам выполнения заданий 100 баллов, оценка за этап не более 48 баллов, тогда:

суммарный балл за выполнение заданий/максимальное количество баллов*100, Например, участник суммарно набрал 32 балла: 32/48*100= 66,6

В случае дробного итогового результата он округляется до десятых

Задание № 9-1 (8 баллов).

Оцените справедливость (правильность) предложенных утверждений, дайте пояснения и обоснования ваших рассуждений:

- 1. Космонавт, находящийся внутри космического корабля, находящегося в свободном полете, во время взлета и посадки, а также, если космонавт выйдет в открытый космос или, если он находится на поверхности корабля все время будет находиться в состоянии невесомости.
- 2. Нельзя в космосе создать условия, чтобы космонавт, находящийся на космическом корабле обладал весом равным его весу на поверхности Земли.
- 3.Законы Паскаля и Архимеда внутри космического корабля, находящегося в свободном полете не справедливы.
- 4. Жидкость, занимающая часть сосуда, в закрытом сосуде на борту космического корабля соберется в шарик.

Возможный ответ.

1. В утверждениях допущены ошибки. На этапах взлета и посадки, когда космический корабль движется с ускорением, имеет место перегрузка; в свободном полете по орбите наблюдается невесомость. Космический корабль и находящиеся в нем тела падают на Землю с одинаковым ускорением, вследствие чего для тел исчезает реакция опоры. Это

вС{}Ш

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ 2023/24 гг. МУНИЦИПАЛЬНЫЙ ЭТАП АСТРОНОМИЯ 9 КЛАСС

воспринимается как потеря веса. Это состояние называется динамической невесомостью. При нахождении космонавта на поверхности корабля космонавт будет иметь вес вследствие притяжения к космическому кораблю, однако его значение будет пренебрежимо мало.

- 2. Вес сила, с которой тело "давит" на опору или "растягивает" подвес. Т.е. суть вопроса в ответе на дополнительный вопрос - можно ли создать такую силу? Это сделать можно, поэтому утверждение не верно. Возможны два варианта:
- 2.1. Космический корабль должен двигаться поступательно с ускорением, равным ускорению свободного падения на поверхности Земли;
- 2.2. Космический корабль должен вращаться с такой угловой скоростью, чтобы в месте нахождения космонавта на корабле центростремительное ускорение было равно 9.8 M/c^2 .
- 3. Закон Паскаля справедлив, поскольку "передача" давления в жидкости или газе определяется взаимодействием частиц вещества, а закон Архимеда не действует, так как и тело, и жидкость оказываются невесомыми.
- 4. Частично справедливо. Считаем, что жидкость занимает часть Несмачивающая жидкость примет форму шара. Смачивающая жидкость растечется по поверхности сосуда.

Класс 9+

Уровень сложности: 1.

Темы: § 6.1. Закон всемирного тяготения, движение по круговой орбите, § 5.3. Движение Луны и спутников планет (приближение круговых орбит).

Физика. Закон всемирного тяготения, законы Ньютона. Сила тяжести, вес тела.

Задание № 9-2 (8 баллов).

Астроном Петя определил среднее расстояние от Солнца до некоторой планеты. Оно оказалось равным 1,59 а.е. Через какой промежуток времени будет наблюдаться противостояние этой планеты?

Возможное решение.

Фактически надо найти синодический период планеты. Для этого сначала надо узнать ее сидерический период. Воспользуемся 3 Законом Кеплера:

$$\frac{T_H^2}{T_{\oplus}^2} = \frac{a_H^3}{a_{\oplus}^3} ,$$

где T_{H-} звездный период неизвестной планеты

ан- среднее расстояние от Солнца до планеты (большая полуось орбиты),

 T_{\oplus} – звездный период Земли (T_{\oplus} = 1 год),

 a_{\oplus} – большая полуось земной орбиты (1 а. е.).

Тогда:

$$a_{_{\!H}}{}^3=T_{_{\!H}}{}^2$$
 $T_{_{\!H}}=(a_{_{\!H}}{}^3)^{1/2}$ $T_{_{\!H}}=2\ co\partial a$ Рассматриваемая планета внешняя. Для внешней планеты:

$$\frac{1}{S} = \frac{1}{T_{\text{\tiny (4)}}} - \frac{1}{T}$$
, где $T = T_{\text{\tiny (4)}}$ отсюда $S = 2$ года

Класс 9+

Уровень сложности: 2.

Темы. § 5.1. Кинематика планет в Солнечной системе (приближение круговых орбит).

ВС{}Ш воероссийская олимпиада школьников

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ 2023/24 гг. МУНИЦИПАЛЬНЫЙ ЭТАП АСТРОНОМИЯ 9 КЛАСС

Задание № 9-3 (8 баллов).

31 августа 2023 года произошло суперлуние, т.е. полнолуние максимально близкое к перигею. Когда это событие повторится в следующий раз?

Возможное решение.

Примечание: без обоснования даже верный ответ считается случайно угаданным.

Суперлунием называют полнолуние, которое происходит во время прохождения Луной перигея. Луна проходит перигей раз в 27,55 суток (аномалистический период или месяц). Однако, из-за движения Земли по орбите вокруг Солнца, цикл смены лунных фаз имеет другую периодичность (синодический период Луны 29,53 суток), и в каждое последующее полнолуние Луна оказывается на орбите немного в иной точке, чем в предыдущее полнолуние. Чтобы полнолуние вновь совпало с перигеем, должно пройти столько синодических интервалов, чтобы суммарно накопить разницу равную одному аномалистическому периоду.

$$t = \frac{27,55 cym}{29,53 cym - 27,55 cym} \cdot 29,53 cym \approx 411 cym.$$

Ответ: примерно через 411 суток или год и 1,5 месяца.

Класс. 9+.

Уровень сложности: 2.

Темы. § 1.3. Луна, ее свойства и движение., § 5.3. Движение Луны и спутников планет (приближение круговых орбит)., § 4.6. Основы летоисчисления и измерения времени.

Задание № 9-4 (8 баллов).

Можно ли увидеть солнечную радугу в истинный солнечный полдень? Ответ обоснуйте.

Возможное решение.

Примечание: без обоснования даже верный ответ считается случайно угаданным.

Основная окружность радуги имеет угловой радиус 42^0 . Значит, такова максимальная высота Солнца, при которой радуга ещё видна. При большей высоте Солнца радуга располагается под горизонтом. Остаётся определить условия, при которых Солнце поднимается выше 42^0 над горизонтом, т.е. когда радугу не видно. Для определённости произведём расчёт для северного полушария Земли.

$$h_{C \max} = h_{\text{He6.3KB}} + \delta_C < 42^0$$

где $h_{\text{неб.} 3 \text{кв.}} = 90^{0}$ — высота подъёма небесного экватора над горизонтом в географическом пункте на широте φ ; δ_{C} — склонение Солнца на дату.

$$h_{Cmax} = 90^{0} - \varphi + \delta_{C} < 42^{0}$$

 $\varphi - \delta_{C} > 90^{0} - 42^{0}, \varphi - \delta_{C} > 48^{0}$

Итак, мы получили ограничение на географическое положение пункта наблюдения и на дни года для северного полушария. Можно обобщить результат на оба полушария Земли, взяв географическую широту и склонение Солнца по модулю.

Рассмотрим 2 конкретных примера. В дни равноденствия склонение Солнца близко к $0^{\rm O}$, значит широта $\phi > 48^{\rm O}$. В день летнего солнцестояния склонение близко к $+23^{\rm O}$, следовательно широта места $> 71^{\rm O}$.

Ответ: можно, но не везде на Земле и не во все дни года. Широта места и текущее склонение Солнца связаны соотношением: ϕ - $\delta_{\it C}$ >48 $^{\it 0}$.

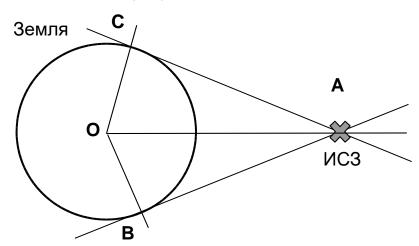
ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ 2023/24 гг. МУНИЦИПАЛЬНЫЙ ЭТАП АСТРОНОМИЯ 9 КЛАСС

Уровень сложности: 1.

Темы. § 3.1. Географические координаты., § 3.2. Горизонтальные координаты на небесной сфере., § 4.5. Видимое движение Солнца и эклиптические координаты.

Физика. Прямолинейное распространение света, понятие о преломлении света.

Задание № 9-5 (8 баллов).


Геостационарный спутник — спутник, который находится на экваториальной орбите и вращается вокруг Земли с периодом равным периоду суточного вращения Земли, из-за чего такой спутник непрерывно находится над одной и той же точкой земной поверхности. Из какой точки на поверхности Земли можно увидеть геостационарный спутник вблизи Полярной звезды в созвездии Малая Медведица?

Возможное решение.

Примечание: без обоснования даже верный ответ считается случайно угаданным.

Для начала найдём высоту геостационарной орбиты, воспользовавшись III законом Кеплера. В качестве объекта сравнения, который также движется по орбите вокруг Земли, рассмотрим Луну.

$$\frac{T_{\pi}^{2}}{a_{\pi}^{3}} = \frac{T_{cn}^{2}}{a_{cn}^{3}} \Rightarrow a_{cn} = a_{\pi} \cdot \left(\frac{T_{cn}}{T_{\pi}}\right)^{\frac{2}{3}} = 384\,000\,\mathrm{км} \cdot \left(\frac{1\,\mathrm{cym}}{27,3\,\mathrm{cym}}\right)^{\frac{2}{3}} \approx 42\,000\,\mathrm{км}$$

Проведя из точки расположения геостационарного спутника касательные к окружности Земли, найдём широты, до которых можно наблюдать геостационар на небе, то есть угол АОС. Рассмотрим прямоугольный треугольник АОС, в котором ОС — радиус Земли.

$$\cos(AOC) = \frac{OC}{OA} \qquad AOC = \arccos(\frac{OC}{OA}) = \arccos(\frac{6400 \, \text{км}}{42000 \, \text{км}})$$
$$AOC \approx 81^{0}$$

Этот угол соответствует предельной широте в северном и южном полушарии Земли, где ещё возможно увидеть геостационарный спутник. Зная этот угол, можно найти в пределах каких склонений на небе могут наблюдаться геостационарные спутники.

$$\delta = \pm (180^{\circ} - 90^{\circ} - AOC) = \pm (180^{\circ} - 90^{\circ} - 81^{\circ}) = \pm 9^{\circ}$$

А поскольку склонение Полярной звезды 89^{0} , то в этой области неба увидеть геостационар не получится.

В принципе отрицательный ответ на вопрос следует уже из рисунка к данной задаче. Направление взгляда на Полярную практически совпадает с направлением оси вращения Земли, а направление взгляда на геостационар сориентировано в сторону экватора, т.е. практически в перпендикулярном направлении.

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ 2023/24 гг. МУНИЦИПАЛЬНЫЙ ЭТАП АСТРОНОМИЯ 9 КЛАСС

Ответ: нет такой точки.

Класс. 9+

Уровень сложности: 2.

Темы. § 1.2. Земля, ее свойства и движение., § 5.3. Движение Луны и спутников планет (приближение круговых орбит)., § 4.2. Параллакс и геометрические способы измерений расстояний., § 4.1. Угловые измерения на небе., § 3.1. Географические координаты., § 3.2. Горизонтальные координаты на небесной сфере., § 4.3. Экваториальные координаты на небесной сфере.

Задание № 9-6 (8 баллов).

На обсерватории имеется телескоп с диаметром зеркала 1 м, который может быть подключен по схеме Ньютона или по схеме Кассегрена. В первом случае эквивалентное фокусное расстояние составляет $F_1=5$ м, во втором случае $F_2=20$ м. На обсерватории выполняются исследовательские программы по следующим объектам: а) тесные двойные системы (кратные звезды), б) рассеянные звездные скопления нашей Галактики, в) газопылевые комплексы нашей Галактики, г) внегалактические объекты. Какие из указанных исследовательских программ нуждаются в подключении по схеме Ньютона, а какие по схеме Кассегрена? Обоснуйте выбор.

Возможное решение.

При исследовании объектов из групп а) и г) важно получить изображение объектов малого углового размера с максимальным угловым увеличением, поле зрения может быть малым. При исследовании объектов из групп б) и в) важно значительное поле зрения, концентрация световой энергии, поскольку объекты распределенные, угловое увеличение может быть малым. Следовательно, для объектов групп а и г лучше выбрать схему с большим фокусным расстоянием (Кассегрена), для объектов групп б и в лучше взять более светосильную схему с коротким фокусным расстоянием (Ньютона).

Класс. 9+

Уровень сложности: 1.

Темы. § 2.2. Звезды и расстояния до них., § 2.3. Объекты далекого космоса., § 7.1. Схемы и принципы работы телескопов.