Ключи к заданиям муниципального этапа Всероссийской олимпиады школьников по астрономии 2023-2024 учебного года 9 класс

1 задание (2 балла)

Расположите расстояния в порядке увеличения:

- 1. Расстояние от Земли до Солнца
- 2. 100 миллион километров
- 3. 1.5 a.e.
- 4. 10 миллиард километров
- 5. Расстояние от Луны до Земли

Решение

Для простоты переведём указанные величины в одни и те же системные единины:

- 1) Расстояние от Земли до Солнца, по определению, равно 1 астрономической единице (1 а.е.) = $1.5 \cdot 10^{11}$ м.
- 2) 100 миллион километров, это $100 \cdot 10^6$ км = $100 \cdot 10^9$ м = 10^{11} м
- 3) 1.5 a. e. = $2.25 \cdot 10^{11}$ M
- 4) $10 \cdot 10^9$ км = $10 \cdot 10^{12}$ м = 10^{13} м
- 5) Насколько мы знаем, Луна сильно ближе к Земле, чем к Солнцу, т.е. меньше всех остальных величин ($384000 \text{ км} = 3.84 \cdot 10^8 \text{ м}$)

Ответ

5, 2, 1, 3, 4;

ИЛИ последовательно расположены соответствующие позиции в текстовом варианте, то есть

- 1. Расстояние от Луны до Земли
- 2. 100 миллион километров
- 3. Расстояние от Земли до Солнца
- 4. 1.5 a.e.
- 5. 10 миллиард километров

№	Критерии	Оценка
1	Дана верная последовательность объектов.	2
	Дана неверная последовательность объетов	0
	ИТОГО	2

2 задание (3 балла)

Рядом со звездой Бетельгейзе находится яркий объект. В каком созвездии находится звезда? Какие из перечисленных объектов могут находиться в этом созвездии?

- 1. Венера
- 2. Комета
- 3. Искусственный спутник Земли
- 4. Mapc
- 5. Луна

Решение

Бетельгейзе — звезда, находящаяся в созвездии Ориона. Видимое движение планет приходится на эклиптику. Видимое движение Луны приходится на эклиптику с разбросом в 5°. Кометы и искусственные спутники Земли не привязаны к определенной плоскости.

Ответ

Созвездие Ориона; объекты 2, 3 (комета и искусственный спутник Земли) (порядок расположения объектов не важен).

No	Критерии	Оценка
1	Написано, что звезда Бетельгейзе находится в созвездии	1
	Ориона;	
	или	
	Написано, что звезда Бетельгейзе находится в	
	незодиакальном созвездии;	
	ИЛИ	
	Написано, что Орион – не зодиакальное созвездие.	
	Созвездие определено неверно.	0
2	Перечислены только два объекта, которые могут находиться	2
	в созвездии.	
	Перечислены два объекта, которые могут находиться в	1
	созвездии И добавлен один объект, которые не может	
	находиться в данном созвездии;	
	ИЛИ	
	Указан только один из двух объектов, которые могут	
	находиться в созвездии	
	В перечислении есть два и более объектов, которые не могут	0
	находиться в созвездии.	
	ИЛИ	
	Не указано ни одного объекта, входящего в правильный	
	ответ.	
	ИТОГО	3

3 задание (2 балла)

Молекула гидроксила ОН в межзвездной среде была открыта в 1963 году. Сколько високосных годов прошло с того момента?

Решение

Правило високосных годов в григорианском календаре: каждый 4-ый месяц високосный, но не каждый 100-ый год, за исключением каждого 400-ого. Задачу можно решить перебором. Так, високосные года: 2020, 2016, 2012, 2008, 2004, 2000 (кратен 400), 1996, 1992, 1988, 1984, 1980, 1976, 1972, 1968, 1964. Всего 15 високосных годов

Ответ

15 високосных годов

№	Критерии	Оценка
1	Указано верное количество високосных годов	2
	Указано НЕ верное количество високосных годов	0
	ИТОГО	2

4 задание (4 балла)

Какие планеты нельзя увидеть рядом с Луной в полнолуние?

Решение

В полнолуние Луна находится в противоположном направлении от Солнца, а значит те планеты, которые всегда находятся рядом с Солнцем – внутренние планеты, видны рядом с полной луной не будут. Внутренними планетами по отношению к Земле являются Меркурий и Венера.

Ответ

Внутренние планеты

или

Меркурий и Венера

No	Критерии	Оценка
1	Указаны только обе планеты из ответа;	4
	ИЛИ	
	Указано, что будут видны только внутренние планеты.	
	Указаны обе планеты из ответа И указана ещё какая-то	2
	планет Солнечной системы;	
	ИЛИ	
	Указана только одна планета из ответа.	
	Указано более двух планет, не входящих в правильный ответ	0
	ИЛИ	
	Указано ни одной планеты из ответа	
_	ИТОГО	4

5 задание (4 балла)

Расположите объекты в порядке их удаления от планеты Земля (начиная с самого близкого и заканчивая самым отдаленным)

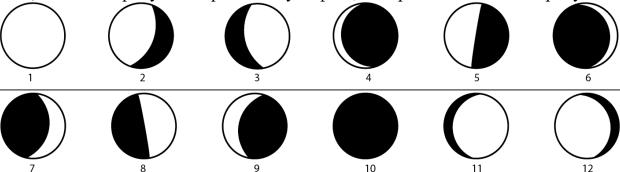
- 1. Меркурий
- 2. Туманность Андромеды (М 31)
- 3. Система спутниковой навигации GPS.
- 4. Проксима Центавра
- 5. Планетарная туманность Гантель (М 27)
- 6. Плутон

Ответ

316452

ИЛИ последовательно расположены соответствующие позиции в текстовом варианте, то есть

- 1. Система спутниковой навигации GPS
- 2. Меркурий
- 3. Плутон
- 4. Проксима Центавра
- 5. Планетарная туманность Гантель (М 27)
- 6. Туманность Андромеды (М 31)


№	Критерии	Оценка
1	Указана верная последовательность объектов	4
	Указана последовательность объектов с точностью до одной	2
	близкой перестановки	
	В любом другом случае	0
	ИТОГО	4

6 задание (5 баллов)

На рисунке 1 представлены различные пронумерованные в произвольном порядке фазы Луны (белое - освещенная часть луны, черное - тёмная часть луны). Наблюдения Луны были сделаны из различных регионов России. Дайте ответ на вопросы, указывая номер соответствующего рисунка:

- 1) Какие фазы соответствуют растущей Луне (полнолуние и новолуние не включать в ответ)
- 2) В какой момент Луна ближе всего к Солнцу?

3) Какой из рисунков предшествует фазе, изображенной на 5-ом рисунке?

Ответ

- 1) 3, 6, 7, 8, 11
- 2) 10
- 3) 2

<u>№</u>	Критерии	Оценка
1	На первый вопрос задачи перечислены правильные номера.	3
	Допускается наличие номеров 1 и 10.	
	В ответе на первый вопрос:	1
	не указан один из номеров;	
	ИЛИ	
	указан лишний номер (помимо 1 и 10)	
	На первый вопрос дан любой другой ответ	0
2	В ответе на второй вопрос дан верный ответ	1
	В ответе на второй вопрос дан неверный ответ	0
3	В ответе на третий вопрос дан верный ответ	1
	В ответе на третий вопрос дан неверный ответ	0
	ИТОГО	5

7 задание (4 балла)

Все из перечисленных спутников принадлежат планетам Солнечной системы. Каких из них обращаются вокруг планет-гигантов?

- 1. Европа
- 2. Фобос
- 3. Титан
- 4. Диона
- 5. Белинда
- 6. Тритон
- 7. Деймос

Решение

У каменных планет (Меркурий, Венера, Земля, Марс) суммарно есть только три спутника: Луна (у Земли), Фобос (у Марса), Деймос (у Марса). Поскольку все из перечисленных в списке задания объекты являются спутниками планет Солнечной системы, то они все помимо этих трех являются спутниками планет-гигантов.

Ответ

1, 3, 4, 5, 6

ИЛИ

Европа, Титан, Диона, Белинда, Тритон

№	Критерии	Оценка
1	Дан верный ответ на задачу	4
	Какой-то из номеров ответа пропущен И не указан Деймос и	2
	Φοδος	
	В любом другом случае	0
	ИТОГО	4

8 задание (8 баллов)

Большая полуось орбиты спутника Юпитера Ио составляет $4,28 \cdot 10^5$ км. В свою очередь, большая полуось орбиты другого спутника Юпитера — Ганимеда, составляет $10,07 \cdot 10^5$ км, а период обращения 7,15 суток. Орбиты спутников практически круговые.

- 1) Определите период обращения Ио вокруг Юпитера;
- 2) Определите линейную скорость Ио.

Решение

1) Воспользуемся третьим законом Кеплера в применении к Ганимеду и Ио,

$$\frac{T_{\Gamma}^{2}}{T_{\text{H}}^{2}} = \frac{a_{\Gamma}^{3}}{a_{\text{H}}^{2}} \Rightarrow T_{\text{H}} = T_{\Gamma} \sqrt{\frac{a_{\Gamma}^{3}}{a_{\text{H}}^{2}}} = 7.15 \text{ (cyt)} \cdot \sqrt{\frac{10.07^{3}}{4.28^{3}}} = 28.80 \text{ cyt}$$

$$28.80 \ \text{сут} = 619.3 \ \text{ч} = 2.23 \cdot 10^6 \ \text{c} = 0.0788 \ \text{зем } \Gamma$$

Здесь T_{Γ} , $T_{\text{И}}$ — периоды обращения планеты вокруг Юпитера для Ганимеда и Ио соответственно, a_{Γ} , $a_{\text{И}}$ — большие полуоси орбит Ганимеда и Ио соответственно

2) Поскольку орбита движения Ио практически круговая (большая полуось в этом случае является радиусом окружности), то справедлива формула для кругового движения

$$v = \omega R \Rightarrow \left[\omega = \frac{2\pi}{T}\right] \Rightarrow v = \frac{2\pi R}{T} \equiv \frac{2\pi a}{T} = \frac{2 \cdot 3.14 \cdot 10.07 \cdot 10^5 \text{ (км)}}{28.80 \text{ (сут)}}$$

 $v = 2.20 \cdot 10^5 \frac{\text{KM}}{\text{cyt}} = 2.20 \cdot 10^8 \frac{\text{M}}{\text{cyt}} = 2541 \frac{\text{M}}{\text{c}} = 2.541 \frac{\text{KM}}{\text{c}}$

Ответ

$$T_{\rm M} = 28.80~{
m cyr} = 619.3~{
m q} = 2.23 \cdot 10^6~{
m c} = 0.0788~{
m 3em}~{
m r}$$
 $v = 2.20 \cdot 10^5 rac{{
m KM}}{{
m cyr}} = 2.20 \cdot 10^8 rac{{
m M}}{{
m cyr}} = 2541 rac{{
m M}}{{
m c}} = 2.541 rac{{
m KM}}{{
m c}}$

Примечание

1) При решении задачи может быть применина «гармония мира»:

$$T^2$$
(сут) = a^3 (зем г)

В этом случае его нельзя приравнивать к третьему закону Кеплера, поскольку данное уравнение применяется к телам, тяготеющий центр которых является Солнце. В свою очередь, тяготеющим центром в этой задаче является Юпитер.

За первый критерий выставляется 1 балл. Ответом на критерий 2 в этом случае считать $T_{\rm H}=\sqrt{a_{\rm H}^3}$. Критерий 3 получает 0 баллов. Критерий 4 оценивается согласно критериям. Критерий 5 получает 1 балл, если при подстановке верного значения большой полуоси получается верный ответ на задачу, в противном случае 0 баллов.

No	Критерии	Оценка
1	Записан третий закон Кеплера в явном или неявном виде (см	2
	прим. 1)	
	ИЛИ	
	За критерий 2 стоит 1 балл.	
	Использована гармония мира (см прим. 1)	1
	В решении задачи нет упоминания закона Кеплера	0
2	Получена или записана формула для вычисления периода обращения спутника Ио	1
	В решении отсутствует формула расчета обращения спутника Ио	0
3	Получено правильное численное значение периода обращения Ио.	1
	Полученное значение периода обращения Ио не совпадает с ответом более, чем на 10%	0
4	Записана или использована связь угловой и линейной скоростей	2
	или	
	Записана или использована связь линейной скорости с	
	радиусом/большой полуосью орбиты и периодом обращения спутника	
	Отсутствует связь угловой и линейной скорости	0
	или	
	Отсутствует связь линейной скорости с радиусом/большой	
	полуосью орбиты и периодом обращения спутника	
5	Получено правильное значение линейной скорости Ио.	2
	Полученное значение линейной скорости Ио не совпадает с	0
	ответом более, чем на 10%	
	ИТОГО	8

9 задание (8 баллов)

Годичный параллакс Сириуса для земного наблюдателя составляет 0,38". Определите годичный параллакс для наблюдателя с Нептуна. Большая полуось орбиты Нептуна 30 а.е., орбита практически круговая.

Решение

Воспользуемся формулой годичного параллакса (здесь принято обозначений p – годичный параллакс)

$$L(\pi \kappa) = \frac{1 \text{ a. e.}}{p_3''}$$

Или

$$L(\pi\kappa) = \frac{a_3 \text{ (a.e.)}}{p_3''}$$

Здесь p_3'' - годичный параллакс для наблюдателя с Земли. В записанной формуле 1 а.е. (или a_3) — это расстояние от Солнца до Земли. С учетом, что расстояние от Солнца до звезды одинаковое, получаем

$$L = \frac{1 \text{ a. e.}}{p_3''} = \frac{30 \text{ a. e.}}{p_H''}$$

 $p_H'' = p_3'' \cdot \frac{30 \text{ a. e.}}{1 \text{ a. e.}} = 0.38'' \cdot 30 = 11.4''$

Ответ

11.4"

Примечание

1) Другие возможные формы записи формулы годичного параллакса, которые могут быть выведены:

$$L = \frac{a}{tg(p)}$$
 $L = \frac{a}{sin(p)}$
 $L = \frac{a}{p \text{ (радианы)}}$

2) Если в решении использована формула **без указания размерности величин в формуле**, при этом совершена численная ошибка, то считать записанную формулу неправильной.

10 задание (8 баллов)

Основная часть массы колец Сатурна простирается от 74500 км до 136800 км от центра планеты. Толщина колец в среднем составляет 10 м. Состоят они из льдинок, средний диаметр которых достигает 5 см. Оцените количество льдинок, если только 3% от объема колец приходится на вещество.

Решение

Объем объем диска, как объем цилиндра с большим радиусом «минус» объем цилиндра с малым радиусом,

$$V = \pi r^2 h$$

 Γ де V — объем цилиндра, r — радиус основания цилиндра, h - высота цилиндра. Тогда

$$V_{\rm A} = V_6 - V_{\rm M} = \pi h (R^2 - r^2) = 3.14 \cdot 10 (1.87 \cdot 10^{16} - 0.55 \cdot 10^{16})$$
 $V_{\rm A} = 41.4 \cdot 10^{16} \,\mathrm{m}^3 = 41.4 \cdot 10^7 \,\mathrm{km}^3$

Здесь V_6 и $V_{\rm M}$ объемы большого и малого цилиндров соответственно. Найдем объем, на который приходится вещество, домножим на коэффициент $\eta=0.03$,

$$V_{\!\scriptscriptstyle \mathrm{B}} = V_{\!\scriptscriptstyle \mathrm{A}} \eta = \eta \pi h (R^2 - r^2) = 1.24 \cdot 10^{16} \; \mathrm{M}^3 = 1.24 \cdot 10^7 \; \mathrm{KM}^3$$

Найдем объем, занимаемый N частицами, как маленьких сфер

$$V_{\rm q} = N \cdot \frac{4}{3}\pi \rho^3 = N \cdot \frac{1}{6}\pi d^3$$

Здесь ρ — радиус частицы. Объем вещества полностью приходится на объем частиц

$$V_{\rm q} = V_{\rm B}$$

$$N \cdot \frac{1}{6}\pi d^3 = \eta \pi h (R^2 - r^2)$$

$$N = \frac{6\eta h (R^2 - r^2)}{d^3} = 1.9 \cdot 10^{20}$$

Ответ

$$1,9 \cdot 10^{20}$$

No	Критерии	Оценка
1	Явно указана или использована формула объема цилиндра	1
	В решении отсутствует формула объема цилиндра	0
2	Явно указана или использована формула объема шара	1
	Расчет годичного параллакса для Нептуна отсутствует	0
3	Получена формула расчета объема диска Юпитера	2
	ИЛИ	
	Рассчитан объем диска Юпитера	
	В решении отсутствует формула расчета объема диска	0
	Юпитера	
4	Получена формула объема для всех частиц	1
	Отсутствует формула для объема всех частиц	0
5	Есть формула взаимосвязи объема всех частиц и объема диска	1
	Отсутствует формула взаимосвязи объема всех частиц и	0
	объема диска	
6	Написана формула для нахождения частиц	1
	Формула для нахождения всех частих отсутствует	0
7	Получен численно правильный ответ	1
	Получен ответ с ошибкой более 10% от правильного	0
	ИТОГО	8