Муниципальный этап всероссийской/областной олимпиады школьников по астрономии

2024/2025 учебный год

10 класс

Максимальный балл – 40

Задача 1 (8 баллов)

Сколько слабых звезд $6^{\rm m}$ может заменить по блеску одну звезду $1^{\rm m}$? одну звезду $2^{\rm m}$? одну звезду $3^{\rm m}$?

Автор Фокин А.В.

Возможное решение:

Воспользуемся формулой Погсона:

$$\frac{E_1}{E_0} = 10^{-0.4(m_1 - m_0)}$$

где E_0 — энергия, излучаемая звездой со звездной величиной m_0 , E_1 — энергия, излучаемая звездой со звездной величиной m_1 .

Отношение энергий равно количеству звезд (N), которые нужно взять для того, чтобы блеск одной яркой звезды заменил блеск N слабых звезд.

Подставив значения в формулу получим: для первого случая — 100 звезд, для второго случая — 40 звезд, для третьего случая - ≈ 16 .

Комментарии к решению:

Ответ может быть получен без использования формулы Погсона, т.к. известно, что изменение звездной величина на 5 единиц, увеличивает световой поток ровно в 100 раз, а изменение звездной величины на одну единицу изменяет световой поток в 2,512 раза. Это позволяет ответить на вопрос задачи без прямого использования формулы Погсона.

Критерии оценивания:

№	Что оценивается	Балл
1	Формула Погсона	5
2	Расчет для звезды со звездной величиной 1 ^m	1
3	Расчет для звезды со звездной величиной 2 ^m	1
4	Расчет для звезды со звездной величиной 2 ^m	1

Если для решения задачи не использована формула Погсона, а в основе решения лежат следующие свойства: 1) увеличению светового потока в 100 раз соответствует уменьшение видимой звёздной величины ровно на 5 единиц и 2) уменьшение звёздной величины на одну единицу означает увеличение светового потока в $100^{1/5} \approx 2,512$ раза — то первое свойство оценивается в 2 балла, а второе — в 3 балла. Итого за пункт №1 — 5 баллов. Остальные пункты — согласно критериям.

Задача №2 (8 баллов)

Укажите, какие из утверждение верны, а какие нет:

- 1. Чем больше увеличение (кратность) телескопа, тем больше падает яркость наблюдаемого объекта.
- 2. Чем больше диаметр объектива, тем более тусклые объекты можно наблюдать
- 3. Чем больше увеличение (кратность) телескопа, тем лучше для наблюдений.
- 4. Что бы лучше разглядеть наблюдаемый объект, нужно что бы выходной зрачок телескопа был больше зрачка глаза человека.
- 5. Улучшение разрешения телескопа достигается увеличением апертуры телескопа.
- 6. Поле зрения телескопа зависит от диаметра окуляра.
- 7. Если закрыть правую половину объектива рукой, то левая половина изображения будет не видна.
- 8. Что бы увидеть в телескоп более мелкие детали, нужно увеличить диаметр объектива телескопа.

Автор: Верховских И.В.

Возможное решение:

- 1. Верно. С увеличением кратности телескопа яркость наблюдаемых объектов падает.
- 2. Верно. С увеличением объектива, телескоп собирает больше приходящего света, тем самым становятся доступны для наблюдения более тусклые объекты.
- 3. Не верно. Критерием увеличения является разрешающая способность телескопа. За пределами разрешающей способности телескопа наращивать увеличение бесполезно.
- 4. Не верно. Если выходной зрачок телескопа будет больше зрачка глаза человека, то часть изображения в глаз не попадет.
- 5. Верно. Апертура это диаметр объектива телескопа. Разрешение телескопа напрямую зависит от диаметра объектива, чем больше диаметр, тем больше разрешение.
- 6. Не верно. Диаметр окуляра не влияет на поле зрения телескопа. Поле зрения телескопа зависит от поля зрения окуляра, кратности телескопа.
- 7. Не верно. В данном случае изображение станет темнее, но сам объект будет виден полностью.

8. Верно. Способность телескопа «видеть» более мелкие детали зависит от разрешающей способности телескопа, а для этого нужно использовать инструмент с большим диаметром объектива.

Критерии оценивания:

За каждый правильный ответ выставляется 1 балл. За неверный ответ баллы не выставляются, но и не уменьшаются из общего количества баллов.

Задача 3 (8 баллов)

Какая планета и во сколько раз проходит большее расстояние по орбите за 1 земной год: Венера или Земля? Какая из этих планет и во сколько раз проходит большее расстояние за свой собственный год? Орбиты считать круговыми. Обоснуйте свои ответы.

Автор Фокин А.В.

Возможное решение:

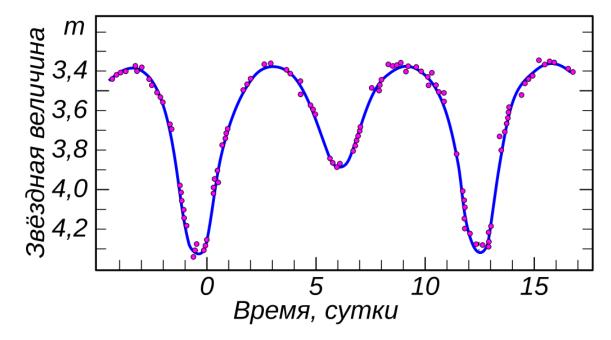
Воспользуемся справочными данными и определим расстояние от планеты до Солнца и периоды их обращения вокруг Солнца: $T_3 = 1$ год, $T_B = 225$ суток $\approx 0,62$ года; $R_3 = 1$ а.e., $R_B = 0,72$ а.e.

Определим расстояние, которое проходит Земля вокруг Солнца за 1 земной год: $L_3 = 2\pi R_3 N_3$, где $N_3 = 1$ – число оборотов, которое совершает Земля вокруг Солнца за 1 год.

Определим расстояние, которое проходит Венера вокруг Солнца за 1 земной год: Lв = 2πRвNв, где Nв≈1,6 — число оборотов, которое совершает Венера вокруг Солнца за 1 год. Тогда расстояние, которое проходит Венера за один земной год примерно в 1,15 раза больше расстояния, которое проходит Земля за тоже время.

Расстояние, которые проходят планеты за свой собственный год равны длине орбиты, поэтому эти расстояния относятся как радиусы орбит. Земля в 1,39 раза проходит большее расстояние за свой год, чем Венера за свой год.

Критерии оценивания:


$N_{\underline{0}}$	Что оценивается	Балл	
1	Идея сравнения расстояний, которые проходят планеты за 1 земной		
	год		
2	Нахождение численного значения отношений	2	
3	Идея сравнения расстояний, которые проходят планеты за один	2	
	собственный год		

4

Качественно сравнить расстояния можно без знания формулы длины окружности. Заметим, что Венера находится ближе к Солнцу, а значит движется быстрее, чем Земля. Тогда за одно и тоже время (1 земной год) расстояние, которое пройдет Венера будет больше, чем расстояние, которое пройдет Земля. Аналогично, за свой собственный год каждая из планет совершает один полный оборот, и так как Земля находится дальше, то и расстояние, которое она проходит — больше. Если приведены правильные качественные рассуждения, но нет численной оценки, то не выставляются баллы за пункт 2 и 4.

Задача №4 (8 баллов)

На рисунке приведена кривая блеска двойной звезды β Лиры. Известно, что орбиты звезд круговые, затмения — центральные, температура первой звезды 30000 К и она горячее второй. Причем, радиус первой звезды в 2,5 раза меньше второй. Определите по предложенным данным температуру второй звезды.

Автор: Гусев А.В.

Возможное решение:

Более глубокий минимум наблюдается в ситуации, когда маленькая горячая звезда располагается за большой холодной. Максимум наблюдается в ситуации, когда обе звезды открыты для наблюдения.

Получаем, что фиксируемые светимости звезд:

$$L_2 = 4\pi R_2^2 T_2^4,$$

$$L = 4\pi R_1^2 T_1^4 + 4\pi R_2^2 T_2^4.$$

По формуле Погсона:

$$\frac{L}{L_2} = \frac{4\pi R_1^2 T_1^4 + 4\pi R_2^2 T_2^4}{4\pi R_2^2 T_2^4} = 10^{0.4\Delta m} = 10^{0.4(4.3 - 3.4)} = 2.29.$$

Получаем:

$$T_2 = \frac{T_1}{\sqrt{2.5} \cdot \sqrt[4]{2.29 - 1}} \approx 17800 \, K.$$

Критерии оценивания:

№	Критерий	Балл
1	Качественное объяснение предложенной кривой	2
2	Формулы для светимостей	2
3	Формула Погсона	2
4	Найдена температура второй звезды	2

Задача 5 (8 баллов)

Изменение яркости новой звезды составляет 10 звездных величин при примерно постоянной температуре расширяющейся фотосферы. Во сколько раз изменяется радиус звезды?

Автор: Гусев А.В.

Возможное решение:

Соотношение светимостей:

$$rac{L_2}{L_1}=rac{4\pi R_2^2\sigma T_2^4}{4\pi R_1^2\sigma T_1^4},$$
 откуда $rac{R_2}{R_1}=\sqrt{rac{L_2}{L_1}}.$ Так как $rac{L_2}{L_1}=2,512^{\Delta m},$ то $rac{R_2}{R_1}=\sqrt{2,512^{10}}=100$

Критерии оценивания:

№	Критерий	Балл
1	Закон Стефана-Больцмана	2
2	Формула площади сферы	1
3	Формула светимости	2
4	Формула Погсона	2
5	Отношение радиусов	1

Справочная информация, которая может понадобиться при решении задач

Основные физические и астрономические постоянные

Гравитационная постоянная $G = 6.672 \cdot 10^{-11} \text{ м}^3 \cdot \text{кг}^{-1} \cdot \text{c}^{-2}$

Скорость света в вакууме $c = 2.998 \cdot 10^8$ м/с

Постоянная Больцмана $k = 1.38 \cdot 10^{-23} \text{ м}^2 \cdot \text{кг} \cdot \text{c}^{-2} \cdot \text{K}^{-1}$

Универсальная газовая постоянная $\mathcal{H} = 8.31 \text{ м}^2 \cdot \text{кг} \cdot \text{c}^{-2} \cdot \text{K}^{-1} \cdot \text{моль}^{-1}$

Постоянная Стефана-Больцмана $\sigma = 5.67 \cdot 10^{-8} \, \mathrm{kr} \cdot \mathrm{c}^{-3} \cdot \mathrm{K}^{-4}$

Постоянная Планка $h = 6.626 \cdot 10^{-34} \text{ кг·м}^2 \cdot \text{c}^{-1}$

Масса протона $m_p = 1.67 \cdot 10^{-27} \text{ кг}$

Масса электрона $m_e = 9.11 \cdot 10^{-31} \text{ кг}$

Элементарный заряд $e = 1.602 \cdot 10^{-19} \text{ Кл}$

Астрономическая единица 1 a.e. = 1.496·1011 м

Парсек 1 пк = 206265 a.e. = $3.086 \cdot 1016$ м

Постоянная Хаббла H = 72 (км/c)/Mпк

Данные о Земле

Эксцентриситет орбиты 0.0167

Тропический год 365.24219 суток

Средняя орбитальная скорость 29.8 км/с

Период вращения 23 часа 56 минут 04 секунды

Наклон экватора к эклиптике на эпоху 2000 года: 23° 26′ 21.45″

Экваториальный радиус 6378.14 км

Полярный радиус 6356.77 км

Macca 5.974·10²⁴ кг

Средняя плотность $5.52 \text{ г}\cdot\text{см}^{-3}$

Объемный состав атмосферы: N_2 (78%), O_2 (21%), Ar (~1%)

Данные о Луне

Среднее расстояние от Земли 384400 км

Минимальное расстояние от Земли 356410 км

Максимальное расстояние от Земли 406700 км

Средний эксцентриситет орбиты 0.055

Наклон плоскости орбиты к эклиптике 5°09'

Сидерический (звездный) период обращения 27.321662 суток

Синодический период обращения 29.530589 суток

Радиус 1738 км

Период прецессии узлов орбиты 18.6 лет

Масса $7.348 \cdot 10^{22}$ кг или 1/81.3 массы Земли

Средняя плотность $3.34 \, \text{г} \cdot \text{см}^{-3}$

Визуальное геометрическое альбедо 0.12

Видимая звездная величина в полнолуние -12.7^m

Видимая звездная величина в первой/последней четверти $-10.5^{\rm m}$

Характеристики орбит планет

Планета	Большая полуось		Эксцент-	Наклон к	Период	Синодический
			риситет	плоскости	обращения	период
				эклиптики		
	млн. км	a.e.		градусы		сут.
Меркурий	57.9	0.3871	0.2056	7.004	87.97 сут.	115.9
Венера	108.2	0.7233	0.0068	3.394	224.70 сут.	583.9
Земля	149.6	1.0000	0.0167	0.000	365.26 сут.	_
Марс	227.9	1.5237	0.0934	1.850	686.98 сут.	780.0
Юпитер	778.3	5.2028	0.0483	1.308	11.862 лет	398.9
Сатурн	1429.4	9.5388	0.0560	2.488	29.458 лет	378.1
Уран	2871.0	19.1914	0.0461	0.774	84.01 лет	369.7
Нептун	4504.3	30.0611	0.0097	1.774	164.79 лет	367.5