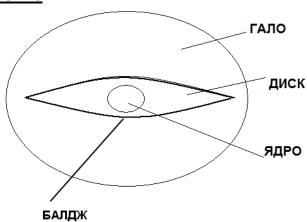
ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ по АСТРОНОМИИ МУНИЦИПАЛЬНЫЙ ЭТАП 2024-2025 учебный год

7-8 классы

Решения и критерии оценивания


Максимальное количество баллов -36 баллов.

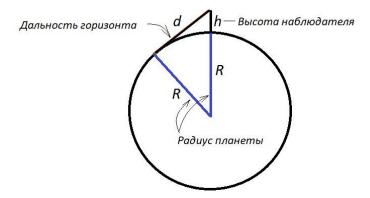
<u>Задача 1</u>

В романе Ивана Ефремова «Туманность Андромеды» есть такие строки: «Мвен Мас переключил датчик на наиболее интересовавшую его всегда галактику НГК 4594 из созвездия Девы, также видимую в плоскости её экватора. Эта галактика. удалённая на расстояние в десять миллионов парсек, походила на толстую линзу горящей звёздной массы/ окутанную слоем светящегося газа. По экватору чечевицу пересекала толстая чёрная полоса — сгущение тёмной материи. Галактика казалась таинственным фонарём, светящим из бездны».

По этому фрагменту сделайте схематический рисунок галактики и укажите на нём основные части типичной галактики.

Решение

Оценка


Изображение линзовидного диска -2 балла, Основные части галактики это - ядро, балдж (центральное утолщение), галактический диск, гало. Указание любых трёх из четырёх по 1 баллу. **Итого 5 баллов.**

Задача 2

Космонавт находиться в небольшом лунном кратере Аристарх, диаметр которого 40 км. Сможет ли он увидеть подножие стенок этого кратера?

Решение

Изобразим чертёж

Для прямоугольного треугольника на рисунке запишем теорему Пифагора:

$$d^2 = (R+h)^2 - R^2,$$

тогда

$$d^2 = 2Rh + h^2.$$

Но h — рост космонавта — очень мал по сравнению с радиусом Луны, им можно пренебречь. Тогда

$$d = \sqrt{2Rh} = \sqrt{2 \cdot 1740000 \cdot 1.8} \approx 2500 \text{ (M)}.$$

То есть при росте космонавта в 1,8 м дальность горизонта составит 2,5 км, и подножие стенок кратера увидеть нельзя.

Оценка

Решение задачи состоит из простых этапов: чертежа- 2 балла, составление уравнения для дальности горизонта d-2 балла, его решения -2 балла, вывод о видимости подножия кратера -2 балла. Итого 8 баллов.

<u>Задача 3</u>

Вращение Солнца происходит с востока на запад, т. е. восточный край приближается к нам, а западный удаляется. Земля же вращается с запада на восток. Параллельны или антипараллельны векторы угловых скоростей Солнца и Земли?

Решение

Если смотреть с северного полюса эклиптики, то вращение Солнца и Земли происходит в одном направлении: против часовой стрелки. Векторы угловых скоростей вращения Солнца и Земли приблизительно сонаправлены.

Оценка

Для того, чтобы ответить на вопрос задачи, необходимо перейти в другую точку отсчёта. Это может быть северный полюс эклиптики или северный полюс мира и т.д. -2 балла. Определение направления вращения 1 балл. За правильный вывод -1 балл. Итого 4 балла.

Задача 4

Во время мощных вспышек на Солнце выбрасываются облака горячей плазмы, скорость которых достигает 1500 км/с. Оцените время, за которое выброшенные облака плазмы достигнут Земли.

Решение

Выброс плазмы достигнет Земли за время

$$t = \frac{S}{v} = \frac{1500000000 \text{ км}}{1500 \frac{\text{км}}{C}} = 100000 \text{ с} \approx 30 \text{ часов.}$$

Оценка

Запись формулы — 2 балла, решение уравнения — 2 балла, перевод секунд в часы — 1 балл. Итого 5 баллов.

Задача 5

Путешественник, находясь в районе земного экватора, заметил, что заходящему солнцу, до горизонта осталось пройти расстояние равное трём диаметрам. Определите, через какое время произойдёт закат солнца?

Решение

Солнце зайдёт, когда верхний край солнца скроется за горизонтом. Таким образом, солнце должно пройти путь равный трём диаметрам плюс один. Угловой размер солнца 0.5° . Значит, солнечному диску нужно пройти угловое расстояние $d=0.5^{\circ}\cdot 4=2^{\circ}$. Так как, дело происходит на экваторе, то солнце движется по суточной параллели перпендикулярно горизонту. Это значит, что за 4 минуты оно опускается на 1° . Значит на 2° оно опустится за 8 минут. Закат произойдёт через 8 минут.

Оценка

Догадка о том, что солнце должно пройти путь равный не трём, а четырём своим диаметрам -2 балла. Знание углового размера солнца -1 балл. Численное определение углового пути -1 балл. Указание на то, что солнце опускается по линии перпендикулярно горизонту -2 балла. Определение угловой скорости солнца и формулирование ответа -2 балла. Итого 8 баллов.

Задача 6

Астероид Юнона обращается вокруг Солнца за 4,3 года. Найдите среднее расстояние Юноны от Солнца.

Решение

Используем третий закон Кеплера:

$$\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3},$$

где $T_2 = 1$ год — период обращения Земли, $a_2 = 1$ а. е. — большая полуось орбиты Земли. Тогда большая полуось орбиты астероида равна:

$$a_1 = \sqrt[3]{T_1^2} = \sqrt[3]{4,3^2} = 2,6 \text{ (a. e.)},$$

что характерно для объекта главного пояса астероидов.

Оценка

Запись III закона Кеплера – 2 балла, подстановка правильных значений – 2 балла, определение расстояния – 2 балла. Ученик может получить ответ и в километрах, тогда 2,6 нужно умножить на 150 000 000 км, получится 390 000 000 км. Итого 6 баллов.