Пермский край

2024-2025 учебный год

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО АСТРОНОМИИ МУНИЦИПАЛЬНЫЙ ЭТАП 7-8 КЛАССЫ

Решения олимпиадных заданий и критерии их оценивания

Максимальная оценка за выполнение всех олимпиадных заданий — 50 баллов. Выставление премиальных баллов сверх максимальной оценки за задание не допускается.

Итоговая оценка за выполнение заданий определяется путём сложения суммы первичных баллов, набранных участником за выполнение заданий **с последующим приведением к 100-балльной системе**, т.е. набранные участниками суммарные первичные баллы умножаются на 2. Таким образом, максимально возможная оценка по итогам выполнения заданий муниципального тура олимпиады по астрономии **100 баллов**.

Задание 1. (8 баллов)

Названия существующих созвездий: 2, 4, 5, 6.

•		
1.	Волосы Андромеды	не существует
2.	Южный Крест	существует
3.	Большой Ковш	не существует
4.	Змееносец	существует
5.	Кассиопея	существует
6.	Микроскоп	существует
7.	Западный Треугольник	не существует
8.	Северный Крест	не существует

Опенивание.

За каждый *правильный* ответ участник олимпиады получает 2 балла (+2 балла).

За каждый *неправильный* ответ вычитается 1 балл (–1 балл).

Если суммарное количество баллов имеет отрицательное значение, то участнику выставляется 0 баллов за выполнение этого задания.

Задание 2. (8 баллов)

$$1 - B$$
, $2 - E$, $3 - A$, $4 - 3$, $5 - Д$, $6 - Ж$, $7 - \Gamma$, $8 - Б$.

Оценивание.

За каждый правильный ответ — 1 балл. За все правильно указанные ответы участник олимпиады получает 8 баллов.

Задание 3. (8 баллов)

- 1) Главный пояс астероидов расположен между орбитами Марса и Юпитера. Церера карликовая планета, располагается в поясе астероидов.
- 2) Межпланетная космическая станция «Dawn», как следует из рисунка 1 в условии задания, приблизилась к Церере на близкое расстояние.
- 3) Следовательно, 4 планеты Солнечной системы Меркурий, Венера, Земля и Марс находятся ближе к Солнцу, чем карликовая планета Церера и станция «Dawn».

4) Значит, только указанные планеты в принципе могут наблюдаться на фоне диска Солнца, когда планета оказывается между космической станцией «Dawn» и Солнцем.

Опенивание.

- 1 пункт решения (указание на местоположение Цереры) 2 балла.
- 2 пункт решения (достаточно близкое расположение Цереры и станции) 2 балла.
- 3 пункт решения (перечисление внутренних относительно орбиты Цереры планет Солнечной системы, за каждую планету по 0,5 баллов) 2 балла.
- 4 пункт решения (знание того, что такое прохождение планеты по диску Солнца) 2 балла.

Задание 4. (8 баллов)

- 1) Основой летоисчисления на Земле является тропический год промежуток времени между двумя последовательными прохождениями центра истинного Солнца через точку весеннего равноденствия, который равен 365,24219 суткам (данное значение представлено в справочной информации, разрешенной к использованию на олимпиаде).
- 2) Аналогично будем определять один год на поверхности экзопланеты (11,2 сут).
- 3) Можем определить продолжительность жизни человека в земных сутках:

$$T_1 = 73.5 * 365,24219 \text{ cyr} = 26 845,3 \text{ cyr}.$$

4) Тогда по летоисчислению экзопланеты пройдет

$$T_2 = 26 845,3 \text{ сут} / 11,2 \text{ сут} = 2 396,9 \text{ лет}.$$

Опенивание.

1 пункт решения (при использовании справочных данных – 365,24219 сут) – 3 балла.

Примечание. Если участник использует в вычислениях приближенное целое значение 365 суток, то за этот пункт решения выставляется только 1 балл.

- 2 пункт решения 1 балл.
- 3 пункт решения (определена продолжительность жизни человека в земных сутках) 2 балла.
- 4 пункт решения (определена продолжительность жизни человека по летоисчислению экзопланеты) 2 балла.

Задание 5. (8 баллов)

1) Так как радиоимпульс за 90 с проходит расстояние от Земли до астероида два раза (происходит отражение радиосигнала от поверхности астероида), нужно разделить это время пополам:

$$90 c / 2 = 45 c$$
.

- 2) Расстояние в 1 лунную единицу радиоимпульс проходит за 1,3 с.
- 3) Для выражения искомого расстояния L до астероида в момент максимального сближения с Землей в лунных единицах (л.е):

$$L = 45 / 1,3 = \approx 34,6$$
 л.е.

Оценивание.

- 1 пункт решения 3 балла.
- 2 пункт решения 2 балла.
- 3 пункт решения (определена искомая величина в л.е.) 3 балла.

Задание 6. (10 баллов)

1) Определяем, сколько звезд $N_{\text{кон}}$ остается в скоплении через 800 000 лет (20% от первоначального количества):

$$N_{\text{кон}} = 1500*0,2 = 300$$
 звезд.

2) Находим количество звезд N_1 , распадающихся на первом этапе (за 200 000 лет), когда скорость распада звезд ниже:

$$N_1 = (70 / 120 \ 000) * 200000 = \approx 117$$
 звезд.

3) Определяем количество звезд N_2 , распадающихся за $800\ 000-200\ 000=600\ 000$ лет (за второй период, когда скорость распада больше):

$$N_2 = 1500 - 300 - 117 = 1083$$
 звезд.

Таким образом, 1083 звезды распадается за 600 000 лет.

4) Скорость распада звезд за первый период (за начальные 200 000 лет):

$$V_1 = 70 / 120 000 = \approx 5.83 \cdot 10^{-4}$$
 звезда/год.

5) Скорость распада звезд за второй период (за 600 000 лет):

$$V_2 = 1083 / 600 000 = \approx 1.81 \cdot 10^{-3}$$
 звезда/год.

6) Находим искомое отношение скоростей:

$$V_2 / V_1 = \approx 3.1.$$

Таким образом, скорость распада звезд увеличивается в 3.1 раза.

Оценивание.

- 1 пункт решения (нахождение количества звезд через 800 000 лет) 1 балл.
- 2 пункт решения (определение количества звезд N_1 , распадающихся на первом этапе) 2 балла.
- 3 пункт решения (определение количества звезд N_2 , распадающихся на втором этапе) 2 балла.
- 4 пункт решения (скорость распада звезд за первый период) 2 балла.
- 5 пункт решения (скорость распада звезд за второй период) 2 балла.
- 6 пункт решения (искомое отношение скоростей) 1 балл.