ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО АСТРОНОМИИ (МУНИЦИПАЛЬНЫЙ ЭТАП) ТЕОРЕТИЧЕСКИЙ ТУР

возрастная группа (7-8 класс)

Максимальная оценка – 48 балла.

ЗАДАНИЕ 1.

Звезда взошла в $00^{4}03^{M}$ по местному времени. Сколько еще раз она пересечет горизонт в данном пункте в эти сутки? Свой ответ поясните.

Решение.

Звездные сутки, равные периоду вращения Земли относительно неподвижных звезд, чуть короче солнечных и равны примерно 23 часа 56 минут. Поэтому данная звезда за эти сутки успеет зайти за горизонт и вновь взойти в 23 часа 59 минут по местному времени, то есть пересечет горизонт еще дважды.

Верный ответ без пояснения	4 балла
Присутствует в решение описания периода вращения Земли относительно не подвижных звезд	2 балла
Указаны временные рамки пересечения горизонта звездой в данном пункте	2 балла
Всего	8 баллов

ЗАДАНИЕ 2.

Какие из созвездий носят названия физических приборов?

Максимальный балл – 8

Решение.

К таким созвездиям можно отнести Весы, Телескоп, Секстант, Октант, Микроскоп, Насос, Компас, Часы.

Критерии оценивания

За каждое правильное созвездие	1 балл
Всего	8 баллов

ЗАДАНИЕ 3.

Житель города Владимира, идя по улице, видит Луну в третьей четверти в верхней кульминации. Он идет утром на работу или вечером с работы?

Максимальный балл – 8

Решение.

Верхняя кульминация светил для северного полушария наступает над югом. В фазе третьей четверти Луна освещена для наблюдателя слева (относительно самого наблюдателя), следовательно, она освещена с востока. Это – утро.

Верный ответ без пояснения	4 балла	
Присутствует пояснение по верхней кульминации	2 балла	
Представлен логический вывод о стороне света, с которой идет освещение (с точки зрения наблюдателя)	2 балла	
Всего	8	баллов

ЗАДАНИЕ 4.

Чему равно угловое склонение звезды, если она наблюдается в направлении на юг под углом к горизонту 58^0 на широте города Владимира $(\phi=56^\circ)$?

Максимальный балл – 8

Решение.

Плоскость небесного экватора для наблюдателя на широте ϕ =56 0 составляет с плоскостью его горизонта угол 90 0 - ϕ =34 0 . По условию задачи, высота светила над горизонтом равна в верхней кульминации 58 0 . Угловое склонение звезды будет равно разности этих значений δ =58 0 -34 0 = 24 0 .

Верный ответ без пояснения	4 балла	
Определение угла между плоскостью горизонта и небесного экватора	2 балла	
Представлен логический вывод о значении углового склонения как разности его высоты над горизонтом и значения угла между плоскостью горизонта и небесного экватора	2 балла	
Всего	8	баллов

ЗАДАНИЕ 5.

В середине XIX века российские астрономы под руководством В.Я. Струве отправились в экспедицию с целью более точно определить радиус Земли. Они измерили расстояние между двумя пунктами, расположенными на одном меридиане: Фугленессом (70°50'с.ш.) и Старо-Некрасовкой (45°20'с.ш.). Какое значение земного радиуса получили астрономы, если расстояние между этими пунктами оказалось равным 2822 км?

Максимальный балл – 8

Решение.

Дуге 2822 км соответствует угол $(70^{\circ}50' - 45^{\circ}20') = 25^{\circ}30' = 25,50^{\circ}$ Длине всей окружности Земли - 360° . Отсюда получим, что длина окружности:

 $(2822~{\rm km}\cdot 360^{\rm o})~/25,5^{\rm o}=39840~{\rm km}.$ Так как длина всей окружности L = $2\pi R$, где R — радиус окружности, найдем R = $39840/~(2\cdot 3,142)=6339,9~{\rm km}\approx 6340~{\rm km}.$

Составление пропорции: 2822 км – $25,5$ °, $2\pi R$ - 360 °	5 баллов
Правильный расчет радиуса Земли	3 балла
Всего	8 баллов

ЗАДАНИЕ 6.

Во сколько раз угловой диаметр Луны $d_{\scriptscriptstyle \rm J}$ при наблюдении с Земли меньше углового диаметра Земли при наблюдении ее с Луны?

Максимальный балл -8

Решение.

Расстояния между центрами Земли и Луны в том и другом случае принимаем равными г. Обозначим, $R_3=6378~{\rm km}-{\rm радиуc}$ Земли, $R_\pi=1738~{\rm km}-{\rm радиуc}$ Луны, тогда:

$$d_3 = \frac{R_3}{r}$$

$$d_{\Lambda} = \frac{R_{\Lambda}}{r}$$

$$\frac{d_3}{d_{\Lambda}} = \frac{R_3}{R_{\Lambda}}$$

Подставляя числовые значения в выведенную формулу, получим:

$$\frac{d_3}{d_{II}} = \frac{6378}{1738} = 3,67$$

Определение приближенного значения углового	5 баллов
радиуса далекого небесного тела по известному	
линейному радиусу и расстоянию до тела	
Провини и то втиничения	3 балла
Правильные вычисления	5 Gailla
Всего	8 баллов

Справочные материалы

Основные физические и астрономические постоянные

Гравитационная постоянная $G = 6.672 \cdot 10^{-11} \text{ м}^3 \cdot \text{кг}^{-1} \cdot \text{c}^{-2}$

Скорость света в вакууме $c = 2.998 \cdot 10^8 \text{ м/c}$

Астрономическая единица 1 а.е. = $1.496 \cdot 10^{11}$ м

Парсек 1 пк = 206265 a.e. = $3.086 \cdot 10^{16}$ м

Данные о Солнце и Земле

Радиус Солнца Rc = 695 000 км

Радиус Луны Rc = 1738 км

Масса Солнца Мс=1.989·10³⁰ кг

Средний радиус Земли $R_3 = 6378$ км

Масса Земли $M_3 = 6 \cdot 10^{24} \, \mathrm{Kr}$

Тропический год – 365.24219 суток

Период вращения Земли 23 часа 56 минут 04 секунды

Наклон экватора к эклиптике года: 23,5°