КРИТЕРИИ ОЦЕНИВАНИЯ

7 класс

7.1. Сестра Земли

Венеру называют "сестра Земли" вследствие сходных масс и размеров, масса Венеры $M_{\odot} = 0.82 M_{\oplus}$, радиус планеты $R_{\odot} = 0.95 R_{\oplus}$. Во сколько раз средняя плотность Венеры меньше средней плотности Земли? Определите среднюю плотность Земли и Земли (в г/см³). Масса Земли: M⊕ = 5,974·10²⁴ кг,

радиус Земли: $R_{\oplus} = 6.37 \cdot 10^3$ км,

объем шара: $V = \frac{4\pi R^3}{2}$.

Решение
$$\rho = \frac{m}{V}, \qquad \qquad (1 \text{ балл})$$

$$\rho = \frac{3m}{4\pi R^3}. \qquad \qquad (1 \text{ балл})$$

$$\rho_{\oplus} = \frac{3M_{\oplus}}{4\pi R_{\oplus}^3}, \; \rho_{\Diamond} = \frac{M_{\oplus}^3}{4\pi R_{\Diamond}^3}, \; \frac{\rho_{\oplus}}{\rho_{\Diamond}} = \frac{M_{\oplus}}{M_{\Diamond}^3} \left(\frac{R_{\Diamond}}{R_{\oplus}}\right)^3, \; \frac{\rho_{\oplus}}{\rho_{\Diamond}} = \frac{M_{\oplus}}{M_{\Diamond}} \left(\frac{R_{\Diamond}}{R_{\oplus}}\right)^3 = \frac{M_{\oplus}}{0.82M_{\oplus}} \left(\frac{0.95R_{\Diamond}}{R_{\oplus}}\right)^3 = \frac{0.95^3}{0.82},$$

$$\frac{\rho_{\oplus}}{\rho_{\Diamond}} = 1.05. \qquad \qquad (2 \text{ балла})$$

$$\rho_{\oplus} = \frac{3 \cdot 5.974 \cdot 10^{24}}{4 \cdot 3.14 \cdot \left(6.37 \cdot 10^6\right)^3} = 5.5 \cdot 10^3 \, \frac{\text{K}\Gamma}{\text{M}^3}, \qquad \qquad (2 \text{ балла})$$

$$\rho_{\oplus} = 5.5 \, \frac{\Gamma}{\text{CM}^3}, \qquad \qquad (2 \text{ балла})$$

$$\rho_{\oplus} = 5.24 \, \frac{\Gamma}{\text{CM}^3}. \qquad \qquad (2 \text{ балла})$$

7.2. Сколько Солнц в большом Солнце?

Звезда VY Большого Пса является звездой сверхгигантом, находится в созвездии Большого Пса. Её радиус в радиусах Солнца $R = 1420R_{\odot}$. Сколько звёзд объёмом Солнца может вместиться внутри этой звезды?

Объём шара: $V = \frac{4\pi R^3}{2}$.

Решение

В объем сверхгиганта нужно вместить объемов Солнца: $V = NV_{\odot}$. (2 балла)

Следовательно, можно через это соотношение можно выразить количество «Солнц»

$$N = \frac{V}{V_{\odot}} = \frac{4\pi R^3}{3} : \frac{4\pi R_{\odot}^3}{3} = \left(\frac{R}{R_{\odot}}\right)^3$$
. (4 балла)

$$R = 1420R_{\odot},$$
 $N = (1420)^3 \approx 2863300000$. (2 балла)

7.3. День астрономии

Всемирный день астрономии отмечается дважды в год — весной и осенью. В этом году осенний день отмечали в субботу 12 октября. А каким днём недели будет 12 октября в 2124 году?

Решение

(1 балл) Всего пройдёт 2124 - 2024 = 100 лет, 100.365 = 36500 дней. (1 балл) тогда количество дней Если учесть, что каждые 4 года бывают високосными (прибавляется 1 день) и 2124 тоже високосный, получим 25 дней. (2 балла) Летоисчисление ведётся по григорианскому календарю, и 2100 год не будет високосным, значит нужно вычесть 1 день, получим 36524 дней. (2 балла) Найдем остаток от деления на 7, чтобы узнать, сколько неполных дней останется от последней недели: остаток 5. (1 балл) Добавим к субботе 5 дней, получим четверг. (1 балл)

7.4. Далёкий Марс

Петя Васечкин решил из наблюдений узнать, сколько километров от Земли до Марса. Из справочника он узнал, что диаметр Марса равен 6780 км. Пронаблюдав за этой планетой, в наиболее подходящий день, Петя установил, что видимый диаметр составляет 25 угловых секунд. С помощью этих данных определите, какое расстояние мог получить юный астроном. Решение сопроводите рисунком.

Решение

Способ І

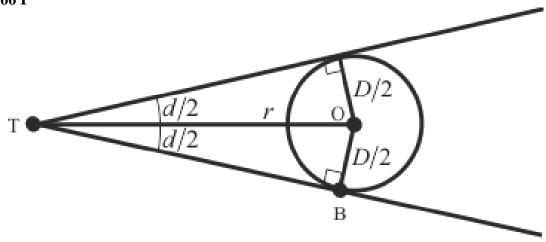


Рисунок (2 балла)

(Неполный рисунок, не содержащий ошибок, оценивается в 1 балл) T — наблюдатель на Земле, d=25'' — угловой диаметр Марса, D — линейный размер Марса (диаметр планеты). ΔTBO — прямоугольный, $\angle OTB = d/2$ — видимый угловой радиус планеты, OB = D/2 — линейный радиус планеты, r = OB — расстояние от Земли до Марса.

$$\sin\frac{d}{2}\approx\frac{D/2}{r}\approx\frac{d}{2} \text{ (для малых углов, } d-\text{в радианах}), \qquad \frac{D}{r}\approx d \text{ рад,}$$

$$1''=\frac{2\pi \text{ рад}}{360\cdot 60\cdot 60}\approx\frac{2\cdot 3,14159}{360\cdot 60\cdot 60}\approx\frac{1}{206265}\text{ рад,} \qquad \Rightarrow \qquad \frac{D}{r}=\frac{d''}{206265''},$$

$$r=\frac{206265''D}{d''}, \qquad \qquad (4 \text{ балла})$$

$$r=\frac{206265''\cdot 6780 \text{ км}}{25''}=5,6\cdot 10^7 \text{ км}. \qquad \qquad (2 \text{ балла})$$

Способ II

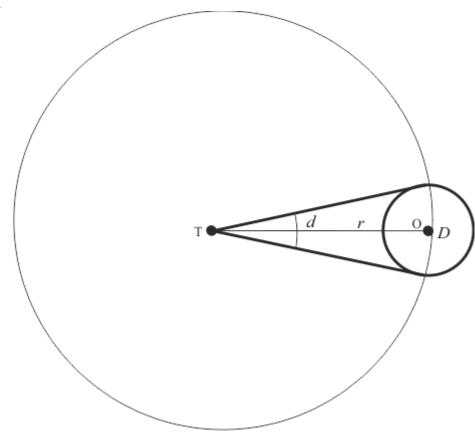


Рисунок (2 балла)

(Неполный рисунок, не содержащий ошибок, оценивается в 1 балл)

T — наблюдатель на Земле, d=25'' — угловой диаметр Марса, D — линейный размер Марса (диаметр планеты), r=OB — расстояние от Земли до Марса. Длина окружности радиуса r, $L=2\pi r$, (1 балл)

$$360^{\circ} = 360 \cdot 60 \cdot 60^{"} = 1296000^{"},$$

$$I = N \cdot D \quad N = \frac{1296000^{"}}{2}$$
(2.59 Jugs

$$L = N \cdot D$$
, $N = \frac{1296000''}{d''}$, (2 балла)

$$N = \frac{1296000''}{25''} = 51840$$
, $r = \frac{N \cdot D}{2\pi}$, (1 балл)

$$r = \frac{51840 \cdot 6780 \text{ км}}{2 \cdot 3.14} = 5,6 \cdot 10^7 \text{ км}$$
 (2 балла)

7.5. Ярчайшая сверхновая

В галактиках могут рождаться не просто новые, а сверхновые звёзды. Таковой является SN 2006gy — одна из самых ярких сверхновых когда-либо регистрируемых в истории наблюдений. Расстояние, на котором находится эта звезда, составляет 73000 кпк. Сколько лет назад "вспыхнула" эта звезда?

1 кпк (килопарсек), кратная величина 1 пк,

1 пк (парсек) = 3,26 световых года.

Решение

r = 73000000 пк. Расстояние от Земли до звезды (1 балл) $r = 73000000 \cdot 3,26 = 2,4 \cdot 10^8$ световых лет. (2 балла) 1 световой год – единица расстояний, равная расстоянию, которое свет проходит за 1 (юлианский) год, (2 балла) 1 св. год = скорость света·1 год. (1 балл) $2,4.10^8$ световых лет = скорость света $\cdot 2,4.10^8$ световых лет. Со взрыва звезды прошло $2.4 \cdot 10^8$ лет.

(2 балла)

7.6. Что видно на небе?

Перед вами представлен рисунок по фото южной части неба с созвездиями, которые можно Туле в 10 часов вечера. Проанализировав наблюдать в рисунок. на следующие вопросы.

- 1) В какое время года проводились наблюдения?
- 2) Как вы смогли это определить?
- 3) Назовите не менее 4-х созвездий, которые можно рассмотреть на фото.

Решение


1) На рисунке изображено летнее небо. (2 балла) Примечание. Ответ без обоснований (предположительно из наблюдений) оценивается указанными двумя баллами.

2) Это можно определить по трём звёздам – астеризму Летний треугольник, в который входят звёзды из созвездий Лебедя, Лиры и Орла. Летний треугольник находится в южной части неба, высоко над горизонтом (вблизи зенита). (2 балла)

Примечание. Возможны другие обоснования, например, созвездие Волопаса с яркой звездой Арктур – на западе, и др.

3) Названы 4 каких-либо созвездия (см. рис. к решению задачи), (4 балла) названо 3 созвездия, (3 балла) названо 2 созвездия (2 балла) названо 1 созвездие, (1 балл)

