# Муниципальный этап всероссийской/областной олимпиады школьников по астрономии

#### 2024/2025 учебный год

#### 8 класс

#### Максимальный балл – 40

#### Задача №1 (8 баллов)

Глаз обычного человека имеет угловое разрешение примерно 1'. С каких планет Солнечной системы можно увидеть диск Солнца?

Автор: Фокин А.В.

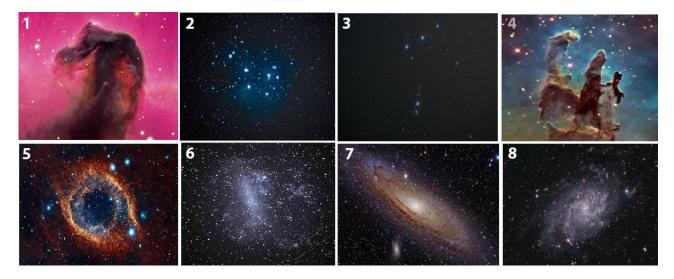
#### Возможное решение:

Угловой размер Солнца при наблюдении с Земли составляет примерно 30°. Для того чтобы глаз не смог различить солнечный диск, мы должны удалиться от него на расстояние, которое более чем в 30 раз больше, чем расстояние от Солнца до Земли. Расстояние от Солнца до Земли составляет 1 а.е, следовательно, мы должны удалиться от Солнца более, чем на 30 а.е. Воспользуемся справочными данными параметров орбит планет Солнечной системы и обнаружим, что на расстоянии более 30 а.е. планет нет (наиболее удаленная от Солнца планета — это Нептун, расстояние до него составляет 30 а.е.). Отсюда следует, что в Солнечной системе нет планет, с которых нельзя было бы разглядеть диск Солнца невооруженным глазом.

## Комментарии к решению:

- 1. Возможно решение с привлечением формул, связывающих между собой угловые размеры небесных тел, их линейные размеры и расстояние от небесного тела до наблюдателя. Результатом использования этих формул должен быть вывод о том, что мы должны удалиться от Солнца на расстояние более 30 а.е.
- 2. Обратите внимание, Плутон не является планетой Солнечной системы, он относится к карликовым планетам.

## Критерии оценивания:


| № | Что оценивается                                                 | Балл |
|---|-----------------------------------------------------------------|------|
| 1 | Использование утверждения о угловых размерах Солнца при         | 2    |
|   | наблюдении с Земли                                              |      |
| 2 | Вывод о необходимости удалиться от Солнца на расстояние в более | 2    |
|   | чем 30 раз большее, чем расстояние от Земли до Солнца           |      |
| 3 | Правильное определение численного значения расстояния           | 2    |
| 4 | Вывод о том, что таких планет в Солнечной системе нет           | 2    |

#### Замечания к оцениванию:

- 1. Если решение содержит правильные формулы, участник олимпиады правильно находит расстояние, с которого нельзя различить диск Солнца невооруженным глазом, то он в полном объеме получает баллы по пунктам 1-3. Если при таком решении участник олимпиады ошибся в расчетах, но исходные положения у него верные, то он не получает баллы по пункту 3. Если исходные формулы, на которые опирается участник олимпиады в своем решении, содержат ошибки, то за пункты 1-3 он получает не более 2 баллов.
- 2. Если участник правильно угадывает ответ задачи, но его объяснения неверные, содержат грубые ошибки или полностью отсутствуют, то участник получает полный балл только за пункт 4.
- 3. Если учащийся указал в качестве планеты Солнечной системы, с которой нельзя различить солнечный диск Плутон, то он не получает балл за пункт 4.

## Задача №2 (8 баллов)

Сопоставьте каждой из картинок название космического объекта. Ответ запишите в виде: номер картинки – буква ответа.



- А. Галактика Андромеда
- Б. Галактика Большое Магелланово облако
- В. Галактика Треугольника
- Г. Планетарная туманность Улитка
- Д. Плеяды
- Е. Пояс Ориона
- Ж. Туманность Конская голова
- 3. Туманность Орла

Автор: Гусев А.В.

#### Возможное решение:

1-Ж;

2-Д;

3-E;

4-3;

5-Γ;

6-Б;

7-A;

8-B

## Критерии оценивания:

Каждый правильно названный объект дает 1 балл

## Задача №3 (8 баллов)

Определите продолжительность светового дня сегодня, в день проведения олимпиады на широтах 0 градусов, 90 градусов и -80 градусов. Поясните свой ответ.

Автор: Верховских И.В.

#### Возможное решение:

Для определения продолжительности светового дня участник должен правильно оценить текущую дату по отношению к дням солнцестояния. В принципе, выбор даты дня проведения олимпиады не критичен в диапазоне октября- ноября месяцев.

Допустим, дата проведения олимпиады 26 ноября 2024 года. Это примерно середина периода между днем осеннего равноденствия и днем зимнего солнцестояния.

Для точек с широтами 0 градусов (Экватор) продолжительность дня не меняется в течении года и остается всегда постоянной – 12 часов.

Точка с широтой +90 градусов (символ «+» может быть упущен) лежит на Северном полюсе. В данный день на территории с широтами больше 66,5 градусов наступила полярная ночь. То есть Солнце не поднимается из-за горизонта в течении всего дня. Таким образом продолжительность светового дня составляет 0 (ноль) часов.

В точках с широтой -80 градусов наступил полярный день, поскольку данные точки в день проведения олимпиады расположены ниже -66,5 градусов Южной широты. То есть Солнце в течении суток не заходит за горизонт и продолжительность светового дня составляет 24 часа.

## Критерии оценивания:

| № | Критерий                                                                       | Балл                                                               |
|---|--------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 1 | В пояснениях участник опирается на даты солнцестояния и осеннего равноденствия | 2                                                                  |
| 2 | Верно указана продолжительность светового дня, приведены верные пояснения      | По 2 балла за каждое значение широты                               |
| 3 | Верно указаны продолжительности дня для каждой из широт без пояснений          | По 1 баллу за каждый правильный ответ. За п1. Баллы не вставляются |

## Задача №4 (8 баллов)

Чебурашка решил праздновать свой День Рождение каждые 1000 дней. В какой день недели Чебурашка отметит свое десятилетие? День рождения Чебурашки считается 20 августа 1966 года (суббота).

Автор: Верховских И.В.

#### Возможное решение:

Если год у Чебурашки составляет 1000 дней, то десять лет это 10 000 дней.

Посчитаем сколько целых недель умещается в 10000 дней: 10000/7 = 1428,57 недель, то есть полных недель 1428.

Узнаем сколько дней составляет дробная часть от деления: 1428\*7=9996 дней. 10000-9996=4. Таким образом получили 1428 недель и еще 4 дня.

День рождения Чебурашки был в субботу. Значит, если бы число недель было целым и без остатка (или без добавки), то Чебурашка праздновал бы свой день рождения по субботам, однако в нашем случае надо к субботе прибавить еще 4 дня и получится среда.

#### Критерии оценивания:

| No | Критерий                                                          | Балл |
|----|-------------------------------------------------------------------|------|
| 1  | Участник определил, что за 10 Чебурашкиных лет прошло 10000 дней. | 2    |
| 2  | Верное вычисление количества недель и дополнительных дней         | 2    |
| 3  | Получен правильный ответ                                          | 4    |

## Задача 5 (8 баллов)

Существование спутников этой планеты было предсказано в художественном произведении за 150 лет до их открытия. Как называется это художественное произведение? О какой планете идет речь? Как называются эти спутники?

Автор: Фокин А.В.

## Возможное решение:

Писатель Дж.Свифт в "Путешествии Гулливера" (1726 г.) предсказал наличие у Марса двух спутников. Период первого был предсказан с точностью до 25%, период второго - до 40%. Сами спутники были открыты американским астрономом Э.Холлом в 1877 году при наблюдениях в 65 см рефрактор и названы Фобосом и Деймосом.

## Критерии оценивания:

| No | Что оценивается                                       | Балл |
|----|-------------------------------------------------------|------|
| 1  | Правильно названо художественное произведение         | 2    |
| 2  | Правильно указано название планеты                    | 2    |
| 3  | Правильно указаны название спутников (Фобос и Деймос) | 2+2  |

## Справочная информация, которая может понадобиться при решении задач

#### Основные физические и астрономические постоянные

Гравитационная постоянная  $G = 6.672 \cdot 10^{-11} \text{ м}^3 \cdot \text{кг}^{-1} \cdot \text{c}^{-2}$ 

Скорость света в вакууме  $c = 2.998 \cdot 10^8$  м/с

Постоянная Больцмана  $k = 1.38 \cdot 10^{-23} \text{ м}^2 \cdot \text{кг} \cdot \text{c}^{-2} \cdot \text{K}^{-1}$ 

Универсальная газовая постоянная  $\mathcal{H} = 8.31 \text{ м}^2 \cdot \text{кг} \cdot \text{c}^{-2} \cdot \text{K}^{-1} \cdot \text{моль}^{-1}$ 

Постоянная Стефана-Больцмана  $\sigma = 5.67 \cdot 10^{-8} \, \text{kr} \cdot \text{c}^{-3} \cdot \text{K}^{-4}$ 

Постоянная Планка  $h = 6.626 \cdot 10^{-34} \text{ кг·м}^2 \cdot \text{c}^{-1}$ 

Масса протона  $m_p = 1.67 \cdot 10^{-27} \text{ кг}$ 

Масса электрона  $m_e = 9.11 \cdot 10^{-31} \text{ кг}$ 

Элементарный заряд  $e = 1.602 \cdot 10^{-19} \text{ Кл}$ 

Астрономическая единица 1 а.е. = 1.496·1011 м

Парсек 1 пк = 206265 а.е. =  $3.086 \cdot 1016$  м

Постоянная Хаббла H = 72 (км/c)/Mпк

#### Данные о Земле

Эксцентриситет орбиты 0.0167

Тропический год 365.24219 суток

Средняя орбитальная скорость 29.8 км/с

Период вращения 23 часа 56 минут 04 секунды

Наклон экватора к эклиптике на эпоху 2000 года: 23° 26′ 21.45″

Экваториальный радиус 6378.14 км

Полярный радиус 6356.77 км

Macca 5.974·10<sup>24</sup> кг

Средняя плотность  $5.52 \, \text{г} \cdot \text{см}^{-3}$ 

Объемный состав атмосферы:  $N_2$  (78%),  $O_2$  (21%), Ar (~1%)

#### Данные о Луне

Среднее расстояние от Земли 384400 км

Минимальное расстояние от Земли 356410 км

Максимальное расстояние от Земли 406700 км

Средний эксцентриситет орбиты 0.055

Наклон плоскости орбиты к эклиптике 5°09'

Сидерический (звездный) период обращения 27.321662 суток

Синодический период обращения 29.530589 суток

Радиус 1738 км

Период прецессии узлов орбиты 18.6 лет

Масса  $7.348 \cdot 10^{22}$  кг или 1/81.3 массы Земли

Средняя плотность 3.34 г⋅см<sup>-3</sup>

Визуальное геометрическое альбедо 0.12

Видимая звездная величина в полнолуние -12.7<sup>m</sup>

Видимая звездная величина в первой/последней четверти –10.5<sup>m</sup>

## Характеристики орбит планет

| Планета  | Большая полуось |         | Эксцент- | Наклон к  | Период      | Синодический |
|----------|-----------------|---------|----------|-----------|-------------|--------------|
|          |                 |         | риситет  | плоскости | обращения   | период       |
|          |                 |         |          | эклиптики |             |              |
|          | млн. км         | a.e.    |          | градусы   |             | сут.         |
| Меркурий | 57.9            | 0.3871  | 0.2056   | 7.004     | 87.97 сут.  | 115.9        |
| Венера   | 108.2           | 0.7233  | 0.0068   | 3.394     | 224.70 сут. | 583.9        |
| Земля    | 149.6           | 1.0000  | 0.0167   | 0.000     | 365.26 сут. | _            |
| Марс     | 227.9           | 1.5237  | 0.0934   | 1.850     | 686.98 сут. | 780.0        |
| Юпитер   | 778.3           | 5.2028  | 0.0483   | 1.308     | 11.862 лет  | 398.9        |
| Сатурн   | 1429.4          | 9.5388  | 0.0560   | 2.488     | 29.458 лет  | 378.1        |
| Уран     | 2871.0          | 19.1914 | 0.0461   | 0.774     | 84.01 лет   | 369.7        |
| Нептун   | 4504.3          | 30.0611 | 0.0097   | 1.774     | 164.79 лет  | 367.5        |