Муниципальный этап всероссийской/областной олимпиады школьников по астрономии

2024/2025 учебный год

9 класс

Максимальный балл – 40

Задача 1 (8 баллов)

Какой должна стать масса Солнца, чтобы Земля обращалась вокруг него с современным периодом, но на втрое большем расстоянии? Каким станет при этом период обращения Марса, если его расстояние останется неизменным?

Автор: Гусев А.В.

Возможное решение:

Из закона всемирного тяготения и второго закона Ньютона получаем:

$$G\frac{mM}{r^2}=m\frac{v^2}{r},$$

где m – масса Земли, M – масса Солнца, r – расстояние между ними, v – скорость Земли.

Кроме того, период:

$$T = \frac{2\pi r}{v}.$$

Получаем:

$$M = \frac{4\pi r^3}{T^2}.$$

Следовательно, если расстояние станет в три раза больше, то масса должна стать в 27 раз больше.

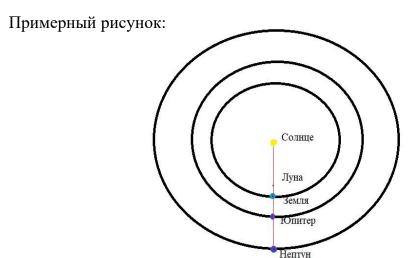
Из табличных данных следует, что у Марса период обращение составляет 687 суток. Следовательно, при увеличении массы Солнца в 27 раз при неизменных параметрах орбиты, его период станет:

$$T = \frac{687}{\sqrt{27}} \approx 132$$
 суток.

Критерии оценивания:

$N_{\underline{0}}$	Критерий	Балл
1	Получена связь между массой Солнца и параметрами орбиты	3
2	Указано во сколько раз должна вырасти масса Солнца	2
3	Указан период обращения Марса (687 суток)	1

Возможно решение задачи с помощью уточненного закона Кеплера. За правильно написанный закон -3 балла (пункт \mathbb{N}^{0} 1). Все остальное - согласно критериям.


Задача 2 (8 баллов)

Во время полного солнечного затмения Юпитер и Нептун находились в противостоянии. Определите примерно угол между Луной и этими планетами. Ответ сопроводите пояснениями и рисунком.

Автор: Верховских И.В.

Возможное решение:

Во время полного солнечного затмения Солнце, Луна и Земля лежат на одной прямой. В конфигурации «Противостояние» планета, а данном случае Юпитер, лежит на одной прямой Солнце — Земля - Юпитер. То же самое касается и Нептуна. Следовательно, Солнце, Луна, Земля, Юпитер и Нептун лежат на одной прямой. Если наблюдатель находится на Земле, то между Луной — Землей — Юпитером (Нептуном) образуется развернутый угол, который равен 180 градусам.

Критерии оценивания:

№	Критерий	Балл
1	Утверждение о том, что Солнце, Луна, Земля и планеты лежат на одной прямой	4
2	Правильный ответ	4

Если в работе участника нет рисунка, при правильном ответе, снимается 2 балла.

Отсутствие пояснений, при наличии рисунка, при правильном ответе снимается 2 балла

Задача 3 (8 баллов)

Данные взяты из данных миссии Gaia DR1 (Gaia Collaboration, 2016), https://vizier.cds.unistra.fr/viz-bin/VizieR. Из представленной таблицы, выберите:

- 1. корректные на ваш взгляд данные,
- 2. выберите звезды ярче 10.00 звездной величины
- 3. выберите звезды в радиусе не далее 300 парсек.

В ответе надо записать номера звезд, в строчку, через запятую.

Название	Параллакс (миллисекунды)	Звездная величина m (mag)	
Звезда №1	1,02	10,161	
Звезда №2	2,7	11,175	
Звезда №3	5,71	10,522	
Звезда №4	-89,04	7,603	
Звезда №5	2,46	9,568	
Звезда №6	1,04	10,847	
Звезда №7	-3,8	11,359	
Звезда №8	5,16	9,987	
Звезда №9	5,99	9,384	
Звезда №10	4,31	11,696	

Автор: Верховских И.В.

Возможное решение:

Этап 1. Участник должен выбрать корректные данные из таблицы. Нужно исключить все строки с отрицательным параллаксом.

Звезды №4 и №7 с отрицательным параллаксом. В дальнейшей обработке они участвовать не должны. За этот этап выставляем 2 балла. Если выбрана только одна звезда из числа исключаемых, то выставляем 1 балл.

Этап 2 Выбрать звезды с яркостью больше, чем 10 звездная величина:

Это звезды №5, №8 и №9. За этот этап выставляем 3 балла. Если участник выбрал все звезды ярче 10 звездной величины, но с отрицательным параллаксом, то за данный этап баллы не уменьшаются. Если участник пропустил какую-то звезду ярче 10 звездной величины, то за каждую пропущенную уменьшаем на 1 балл.

Этап 3 Рассчитать расстояние до звезды в парсеках = обратная величина от параллакса, учесть, что параллакс задан в миллисекундах. Из полученного списка выбрать звезды,

которые ближе 300 Пк. За этот этап выставляется 3 балла. Если участник выбирает звезды без учета этапов 2 и 1, за данный этап баллы не уменьшаются. За каждую ошибочную звезду с расстоянием более 300 Пк уменьшаем баллы за данный этап на 1.

Ответ: Звезды №8 и №9.

Участник может указать итоговый ответ сразу, без промежуточных списков. Если итоговый результат указан верно, то баллы за задание выставляются полностью.

Задача 4 (8 баллов)

Луна взошла во вторник в 23 часа 45 минут. Определите, когда произойдет ее следующий восход?

Автор: Фокин А.В.

Возможное решение:

За один лунный месяц (синодический период обращения Луны - 29.5 суток) Луна проходит по небосклону на 1 оборот меньше, чем Солнце, то есть 28.5 лунных суток равны 29.5 суткам солнечным. Лунные сутки равны: 24h * (29.5/28.5) = 24h 50m. Поэтому каждый следующий восход Луны происходит примерно через 24 часа 50 минут, т.е. следующий восход Луны будет в четверг в 0h 35m.

Критерии оценивания:

$N_{\underline{0}}$	Критерий	Балл
1	Синодический период обращения Луны	3
2	Найдена длительность лунных суток	3
3	Правильное определено время следующего восхода Луны	2

Задача 5 (8 баллов)

Два самых ярких компонента восьмикратной звездной системы Кастор, альфа Близнецов (лат. *а Geminorum*) находятся на угловом расстоянии 4 секунду дуги. Для телескопа рефлектора системы Добсон с диаметром зеркала 256 мм и фокусным расстоянием объектива 1200 мм подберите окуляр, с необходимым фокусным расстоянием. Разрешающая способность глаза составляет 2'.

Автор: Верховских И.В.

Возможное решение:

Сначала надо проверить разрешающую способность телескопа, способен ли он разрешить два точечных источника на расстоянии 4 секунды.

Разрешающая способность телескопа в видимом диапазоне может быть вычислена по формуле Q=138"/D (мм), то есть Q=138/256=0.54 секунды. Таким образом, телескоп способен разрешить эту двойную систему.

Далее необходимо вычислить необходимую кратность телескопа, что бы глаз мог различить эти источники как отдельные. Разрешающая способность глаза составляет 2 минуты или 120 секунд. Увеличение телескопа должно быть минимум K=120/4=30 крат. При заданных параметрах телескопа, в частности фокусного расстояния объектива в 1200 мм фокусное расстояние окуляра можно вычислить из формулы K=F/f, отсюда f=F/K=1200/30=40 мм.

Критерии оценивания:

No	Критерий	Балл
1	Оценка разрешающей способности телескопа	3
2	Оценка разрешающей способности глаза и вычисление необходимого увеличения	3
3	Вычисление правильного ответа	2

Участник может не проверить разрешающую способность объектива, тогда за п1. Баллы не выставляются.

При вычислении увеличении телескопа участник может принять разрешающую способность глаза в 1 минуту или 60 секунд, и получить ответ 80 мм фокусное расстояние окуляра. Это не является ошибкой и баллы за п. 2 и п.3 выставляются полностью, при условии правильных вычислений.

Справочная информация, которая может понадобиться при решении задач

Основные физические и астрономические постоянные

Гравитационная постоянная $G = 6.672 \cdot 10^{-11} \text{ м}^3 \cdot \text{кг}^{-1} \cdot \text{c}^{-2}$

Скорость света в вакууме $c = 2.998 \cdot 10^8$ м/с

Постоянная Больцмана $k = 1.38 \cdot 10^{-23} \text{ м}^2 \cdot \text{кг} \cdot \text{c}^{-2} \cdot \text{K}^{-1}$

Универсальная газовая постоянная $\mathcal{H} = 8.31 \text{ м}^2 \cdot \text{кг} \cdot \text{c}^{-2} \cdot \text{K}^{-1} \cdot \text{моль}^{-1}$

Постоянная Стефана-Больцмана $\sigma = 5.67 \cdot 10^{-8} \, \text{кг} \cdot \text{c}^{-3} \cdot \text{K}^{-4}$

Постоянная Планка $h = 6.626 \cdot 10^{-34} \text{ кг·м}^2 \cdot \text{c}^{-1}$

Масса протона $m_p = 1.67 \cdot 10^{-27} \text{ кг}$

Масса электрона $m_e = 9.11 \cdot 10^{-31} \text{ кг}$

Элементарный заряд $e = 1.602 \cdot 10^{-19} \text{ Кл}$

Астрономическая единица 1 а.е. = 1.496 · 1011 м

Парсек 1 пк = 206265 a.e. = $3.086 \cdot 1016$ м

Постоянная Хаббла H = 72 (км/c)/Mпк

Данные о Земле

Эксцентриситет орбиты 0.0167

Тропический год 365.24219 суток

Средняя орбитальная скорость 29.8 км/с

Период вращения 23 часа 56 минут 04 секунды

Наклон экватора к эклиптике на эпоху 2000 года: 23° 26′ 21.45″

Экваториальный радиус 6378.14 км

Полярный радиус 6356.77 км

Macca 5.974·10²⁴ кг

Средняя плотность 5.52 г⋅см⁻³

Объемный состав атмосферы: N_2 (78%), O_2 (21%), Ar (~1%)

Данные о Луне

Среднее расстояние от Земли 384400 км

Минимальное расстояние от Земли 356410 км

Максимальное расстояние от Земли 406700 км

Средний эксцентриситет орбиты 0.055

Наклон плоскости орбиты к эклиптике 5°09'

Сидерический (звездный) период обращения 27.321662 суток

Синодический период обращения 29.530589 суток

Радиус 1738 км

Период прецессии узлов орбиты 18.6 лет

Масса 7.348·10²² кг или 1/81.3 массы Земли

Средняя плотность 3.34 г см⁻3

Визуальное геометрическое альбедо 0.12

Видимая звездная величина в полнолуние -12.7^m

Видимая звездная величина в первой/последней четверти –10.5^m

Характеристики орбит планет

Планета	Большая полуось		Эксцент-	Наклон к	Период	Синодический
			риситет	плоскости	обращения	период
				эклиптики		
	млн. км	a.e.		градусы		сут.
Меркурий	57.9	0.3871	0.2056	7.004	87.97 сут.	115.9
Венера	108.2	0.7233	0.0068	3.394	224.70 сут.	583.9
Земля	149.6	1.0000	0.0167	0.000	365.26 сут.	_
Марс	227.9	1.5237	0.0934	1.850	686.98 сут.	780.0
Юпитер	778.3	5.2028	0.0483	1.308	11.862 лет	398.9
Сатурн	1429.4	9.5388	0.0560	2.488	29.458 лет	378.1
Уран	2871.0	19.1914	0.0461	0.774	84.01 лет	369.7
Нептун	4504.3	30.0611	0.0097	1.774	164.79 лет	367.5