<u>Решения заданий муниципального этапа Всероссийской олимпиады</u> <u>школьников по астрономии 2024 - 2025 учебный год</u>

9 класс

1. Луна и Юпитер на небе

28 октября 2023г. произошло частное лунное затмение, во время которого Луна располагалась на небе всего в нескольких градусах от Юпитера. В какой примерно конфигурации был Юпитер в это время? Ответ обоснуйте.

Решение

Лунные затмения происходят во время полнолуний, когда наш спутник располагается в области неба, противоположной Солнцу. Т.к. сам Юпитер в это время находился на небе недалеко от Луны, то можно сказать, что он располагался вблизи своего противостояния (оппозиции). Действительно, если воспользоваться астрономическим календарем или какой-либо астрономической программой и посмотреть, когда у Юпитера было противостояние в 2023г., то выяснится, что это произошло 3 ноября 2023г. Таким образом, наше предположение оказалось весьма близким к действительности.

2. <u>«К Земле летит метеорит»</u>

В средствах массовой информации и различных источниках иногда можно встретить такое выражение: «к Земле летит метеорит». Насколько правомерно такое высказывание? Обоснуйте свой ответ.

<u>Решение</u>

С точки зрения принятой в астрономии терминологии такая формулировка некорректна. Метеоритом называется остаток метеороида (метеорного тела), не полностью сгоревшего в земной атмосфере (или в

атмосфере другой планеты) и впоследствии достигшего поверхности планеты. До встречи с Землей, пока такой объект свободно путешествует в межпланетном пространстве Солнечной системы, его правильно называть именно метеороидом или метеорным телом.

3. Когда теплее?

Когда Земля получает больше всего солнечного тепла? Ответ обоснуйте.

Решение

Земля движется по слегка вытянутой эллиптической орбите. Соответственно, больше всего солнечного тепла наша планета получает, когда проходит точку перигелия своей орбиты и оказывается ближе всего к Солнцу. Это происходит ежегодно в районе 4 января.

Некоторые замечания по оценке задачи

Учащийся может не помнить точную дату прохождения Землей точки перигелия, учитывая, что этот момент может еще периодически смещаться на соседние даты в високосные годы. Но для засчитывания правильного ответа им должен быть указан этот момент с точностью до двух недель (например, можно сказать, что это происходит в конце декабря—начале января, либо в первой половине января) с обязательным обоснованием, почему именно в это время наша планета получает больше всего солнечного тепла. Если учащийся дает ответ типа «когда у нас лето», «в день летнего солнцестояния» и т.п., то подобные ответы не засчитываются вовсе, т.к. речь в задаче ведется не о каком-то отдельном земном полушарии, а о всей Земле в целом.

4. Середина затмения

1 июня 2030 г. в Костроме будет наблюдаться частное солнечное затмение. Начнется это затмение в нашем городе в 7^h27^m по московскому времени, а закончится в 10^h02^m . Максимальная фаза этого солнечного затмения для нашего города составит 0,77, т.е. лунный диск закроет собой 77% диаметра диска Солнца. Попробуйте оценить, в какое время наступит максимальная фаза этого затмения в нашем городе.

Решение

Видимое движение Луны на небе относительно звезд и Солнца, частности, происходит неравномерно. Однако на небольшом временном интервале угловое перемещение Луны на небе относительно Солнца с определенной долей точности можно рассматривать как равномерное. В этом случае за момент максимальной фазы солнечного затмения можно принять середину временного интервала между началом и окончанием затмения.

Исходя из данных, представленных в условии задачи, легко посчитать, что затмение в нашем городе продлится 2 часа 35 минут. Половина этого интервала составит 1 час 17,5 минут. Тогда легко посчитать, что середина

затмения и момент максимальной фазы выпадет примерно на $08^{\rm h}44^{\rm m}$ — $08^{\rm h}45^{\rm m}$ по московскому времени.

В действительности момент максимальной фазы произойдет в $08^{\rm h}41^{\rm m}$, так что мы не сильно ошиблись в своей оценке.

5. Кольцеобразное затмение

Во время некоторого кольцеобразного солнечного затмения угловые размеры Солнца и Луны составляли, соответственно, 32,5' и 30,0'. Какая доля видимой площади солнечного диска осталась незакрытой диском Луны в середине этого затмения?

Решение

Пусть ρ_S и ρ_M — угловые поперечники, соответственно, солнечного и лунного дисков.

Тогда видимые площади этих объектов на небесной сфере будут равны:

$$S_S = \frac{\pi \rho_S^2}{4}$$
$$S_M = \frac{\pi \rho_M^2}{4}$$

Тогда искомая доля незакрытой видимой площади солнечного диска будет равна:

$$d = \frac{S_S - S_M}{S_S} = \frac{\rho_S^2 - \rho_M^2}{\rho_S^2} = 1 - \left(\frac{\rho_M}{\rho_S}\right)^2 \approx 0.15$$

Таким образом, около 15% видимой площади солнечного диска осталась незакрытой диском Луны.

6. Солнце и звезда

Некоторая звезда имеет экваториальные координаты α =06^h, δ =0°. Какое угловое расстояние разделяет эту звезду и центр солнечного диска 21 июня?

Решение

21 июня — день летнего солнцестояния. В этот день экваториальные координаты Солнца равны α = $06^{\rm h}$, δ = $23,5^{\circ}$. Как можно заметить, в это время Солнце и наша звезда располагаются на одном круге склонения (часовом круге), вдоль которого и будет измеряться угловое расстояние между светилами, которое просто будет равно разности склонений этих объектов, т.е. составит $23,5^{\circ}$.