Краткие решения Муниципальный этап, 2024

Всероссийская олимпиада школьников

по АСТРОНОМИИ

Муниципальный этап

9 класс

Краткие решения

ВАРИАНТ 1

Максимальное количество баллов – 48.

Задача 1.

Комета C/2023A3 Цзыцзиньшань-Атлас (Tsuchinshan–ATLAS) прошла перигелий 27 сентября 2024 года на расстоянии 0.39 а.е. от Солнца, при этом максимального видимого блеска она достигла лишь 9 октября (хотя её наземные наблюдения в эти дни были осложнены угловой близостью к Солнцу, но с борта космических телескопов она отлично наблюдалась). Из-за чего максимум блеска запоздал относительно момента перигелия кометы?.

Решение: Видимый блеск кометы зависит не только от её расстояния до Солнца, но и от её расстояния до Земли (6 баллов). На минимальное расстояние к Земле комета приблизилась как раз 9 октября, поэтому и яркость её тогда была максимальная (2 балла вывод).

Задача 2. Рисунок 1. Фото Луны вблизи «микролуния » и «суперлуниия» (негативное изображение).

Краткие решения Муниципальный этап, 2024

Вам предложено два снимка Луны, сделанные вблизи «микролуния » 25.02.2024 и «суперлуниия» 18.08.2024 на обычный фотоаппарат с помощью объектива с фокусным расстоянием 500мм. Определите эксцентриситет орбиты Луны.

Примечание: Хотя официальных терминов «микролуние» и «суперлуние» нет, так в прессе называют полнолуния, когда Луна, за счёт эллиптичности орбиты, имеет минимальный и максимальный размеры, соответственно.

Решение: Прежде всего, ученик должен догадаться, что «микролуние» соответствует полнолунию вблизи апогея, а «суперлуние» - вблизи перигея луны (2 балла). Обозначим через Q — апогейное расстояние, q — перигейное; через D- видимый угловой диаметр в «суперлуние», d — оный в «микролуние».

Угловой размер Луны обратно пропорционален расстоянию до неё, D=l/q, d=l/Q (1 балл). Тогда соотношение для эксцентриситета e=(Q-q)/(Q+q) эквивалентно e=(D-d)/(D+d) (3 балла). Этот факт участник может либо знать, либо вывести на месте.

Измеряя (любым способом) диаметр Луны на изображении, получим e=0.05, что весьма близко к реальности. Верным можно считать ответ от 0.04 до 0.06 (2 балла за ответ в этом диапазоне). Если ответ не укладывается в диапазон, но логика решения верна, задачу следует оценить не выше, чем в 6 баллов).

Задача 3.

Для наблюдателя на Земле звезда 1 имеет экваториальные координаты α_1 =01 h 00 m и δ_1 =0 o , а звезда 2 α_2 =07 h 00 m и δ_2 =0 o .Расстояние до звезды 1 - 30 световых лет, а расстояние до звезды 2 - 40 световых лет. Найдите линейное расстояние между звездами 1 и 2.

Решение: прежде всего заметим, что плоский угол между звёздами для наблюдателя составляет 90° (3 балла), поэтому для решения применима простая теорема Пифагора. Тогда расстояние между звёздами l это гипотенуза прямоугольного треугольника (2 балла пояснение или рисунок). Поэтому $l=sqrt(30^2+40^2)=50$ св. лет (3 балла верные вычисления).

Задача 4.

Наблюдатель, находясь на экваторе Земли, следит за двумя звёздами. Звезда A имеет экваториальные координаты α_1 =01 h 00 m и δ_1 =60 o , а звезда Б α_2 =01 h 00 m и δ_2 =--60 o . Звезда A взошла в 3 h местного среднего солнечного времени. Во сколько в те же сутки взойдёт звезда Б?

Решение: Поскольку на экваторе Земли все звёзды, находящиеся на одном круге склонений (т.е. имеющие равные прямые восхождения) восходят одновременно, то звезда E так же взойдёт в E^h (E баллов за любые верные рассуждения).

Для иллюстрации этого факта можно вспомнить, что при наблюдении на экваторе Земли небесный экватор является первым вертикалом и перпендикулярен мат. горизонту.

Краткие решения Муниципальный этап, 2024

Задача 5.

Возьмем 3 Солнца, соединим их в один объект и получим белую звезду с температурой фотосферы 10 000К и средней плотностью 0.5 г/см³. Вычислите радиус белой звезды . Определите светимость полученной звезды в светимостях Солнца.

Решение: Плотность звезды

$$\rho = M/((4/3)\pi R^3)$$
, (2 балла)

откуда

$$R = [M/((4/3)\pi\rho)]^{1/3} = [3\cdot 2\cdot 10^{33}/((4/3)\cdot 3.14\cdot 0.5)]^{1/3} = 2.1\cdot 10^{11} \text{ cm}, (2)$$

балла) что составляет 3Ro.

Вычислим светимость звезды: $L = 4\pi R^2 \sigma T^4 = (R/R_O^2)(T/T_O^4) = 9.7.7 = 69 L_O$. (4 балла)

Задача 6.

Новая звезда в спокойном состоянии имела блеск $13^{\rm m}$, но во время вспышки увеличила яркость на $3^{\rm m}$. Увидит ли наблюдатель в школьный телескоп диаметром 6см эту звезду во время вспышки?

Решение: Для точечных объектов (коими являются звёзды при наблюдении с малым увеличением) проницание пропорционально площади собирающей поверхности или квадрату апертуры, $S\sim D^2$, $S_1/S_2 = (D_1/D_2)^2$ (2 балла).

При использовании телескопа выигрыш составит $(60/6)^2 = 100$ раз (1 балл вычисления). 100 раз это 5^m (2 балла) поэтому мы увидим звёзды вплоть до $6+5=11^m$ (1 балл). Яркость новой в момент вспышки $13-3=10^m$ (1 балл), так что при проницании 11^m это будет доступный для наблюдения объект (1 балл вывод).

Справочные данные:

 $1a.e.=1.496\cdot10^{8}$ km; $1\pi k=206265$ a.e;

Масса Солнца $2\cdot 10^{30}$ кг, Земли $6\cdot 10^{24}$ кг, Марса $6\cdot 10^{23}$ кг Луны

 7.10^{22} кг; Радиус Солнца $-6.96.10^5$ км.

Гравитационная постоянная G=6.67·10⁻¹¹

 $H*m^2/кг^2$; Скорость света 3.10^5 (км/с)

Диаметр зрачка человека — 6мм. Предельная звёздная величина, наблюдаемая невооружённым глазом $+6^{\rm m}$.

Краткие решения Муниципальный этап, 2024

Всероссийская олимпиада школьников

по АСТРОНОМИИ

Муниципальный этап

9 класс

Краткие решения ВАРИАНТ 2

Максимальное количество баллов – 48.

Задача 1. Рисунок 1. Фото Луны вблизи «микролуния » и «суперлуниия» (негативное изображение).

Вам предложено два снимка Луны, сделанные вблизи «микролуния » 25.02.2024 и «суперлуниия» 18.08.2024 на обычный фотоаппарат с помощью объектива с фокусным расстоянием 500мм. Определите эксцентриситет орбиты Луны.

Примечание: Хотя официальных терминов «микролуние» и «суперлуние» нет, так в прессе называют полнолуния, когда Луна, за счёт эллиптичности орбиты, имеет минимальный и максимальный размеры, соответственно.

Краткие решения Муниципальный этап, 2024

Решение: Прежде всего, ученик должен догадаться, что «микролуние» соответствует полнолунию вблизи апогея, а «суперлуние» - вблизи перигея луны (2 балла). Обозначим через Q — апогейное расстояние, q — перигейное; через D- видимый угловой диаметр в «суперлуние», d — оный в «микролуние».

Угловой размер Луны обратно пропорционален расстоянию до неё, D=l/q, d=l/Q (1 балл). Тогда соотношение для эксцентриситета e=(Q-q)/(Q+q) эквивалентно e=(D-d)/(D+d) (3 балла). Этот факт участник может либо знать, либо вывести на месте.

Измеряя (любым способом) диаметр Луны на изображении, получим e=0.05, что весьма близко к реальности. Верным можно считать ответ от 0.04 до 0.06 (2 балла за ответ в этом диапазоне). Если ответ не укладывается в диапазон, но логика решения верна, задачу следует оценить не выше, чем в 6 баллов).

 Π ри этом, как видно, знание абсолютного значения диаметра Π уны l для решения не требуется.

Задача 2.

Комета C/2023A3 Цзыцзиньшань-Атлас (Tsuchinshan–ATLAS) прошла перигелий 27 сентября 2024 года на расстоянии 0.39 а.е. от Солнца, при этом максимального видимого блеска она достигла лишь 9 октября (хотя её наземные наблюдения в эти дни были осложнены угловой близостью к Солнцу, но с борта космических телескопов она отлично наблюдалась). Из-за чего максимум блеска запоздал относительно момента перигелия кометы?.

Решение: Видимый блеск кометы зависит не только от её расстояния до Солнца, но и от её расстояния до Земли (6 баллов). На минимальное расстояние к Земле комета приблизилась как раз 9 октября, поэтому и яркость её тогда была максимальная (2 балла вывод).

Задача 3.

Для наблюдателя на Земле звезда 1 имеет экваториальные координаты α_1 = 01^h00^m и δ_1 = 0^o , а звезда 2 α_2 = 07^h00^m и δ_2 = 0^o .Расстояние до звезды 1 - 30 световых лет, а расстояние до звезды 2 - 40 световых лет. Найдите линейное расстояние между звездами 1 и 2.

Решение: прежде всего заметим, что плоский угол между звёздами для наблюдателя составляет 90° (3 балла), поэтому для решения применима простая теорема Пифагора. Тогда расстояние между звёздами l это гипотенуза прямоугольного треугольника (2 балла пояснение или рисунок). Поэтому $l=sqrt(30^2+40^2)=50$ св. лет (3 балла верные вычисления).

Задача 4.

Наблюдатель, находясь на экваторе Земли, следит за двумя звёздами. Звезда A имеет экваториальные координаты α_1 =01 h 00 m и δ_1 =60 o , а звезда Б α_2 =01 h 00 m и δ_2 =--60 o . Звезда A взошла в 3 h местного среднего солнечного времени. Во сколько в те же сутки взойдёт звезда Б?

Решение: Поскольку на экваторе Земли все звёзды, находящиеся на одном круге склонений (т.е. имеющие равные прямые восхождения) восходят одновременно, то звезда E так же взойдёт в E E баллов за любые верные рассуждения).

Для иллюстрации этого факта можно вспомнить, что при наблюдении на экваторе Земли небесный экватор является первым вертикалом и перпендикулярен мат. горизонту.

Краткие решения Муниципальный этап, 2024

Задача 5.

Возьмем 3 Солнца, соединим их в один объект и получим белую звезду с температурой фотосферы 10 000К и средней плотностью $0.5~\rm r/cm^3$. Вычислите радиус белой звезды. Определите светимость полученной звезды в светимостях Солнца.

Решение: Плотность звезды

$$ho = M/((4/3)\pi R^3)$$
 , **(2 ба**лла)

откуда

$$R = [M/((4/3)\pi\rho)]^{\frac{1}{3}} = [3\cdot2\cdot10^{33}/((4/3)\cdot3.14\cdot0.5)]^{\frac{1}{3}} = 2.1\cdot10^{11}$$
 см, (2 балла)

что составляет $3R_O$.

Вычислим светимость звезды: $L = 4\pi R^2 \sigma T^4 = (R/R_O^2)(T/T_O^4) = 9.7.7 = 69 L_O$. (4 балла)

Задача 6.

Новая звезда в спокойном состоянии имела блеск $13^{\rm m}$, но во время вспышки увеличила яркость на $3^{\rm m}$. Увидит ли наблюдатель в школьный телескоп диаметром 6см эту звезду во время вспышки?

Решение: Для точечных объектов (коими являются звёзды при наблюдении с малым увеличением) проницание пропорционально площади собирающей поверхности или квадрату апертуры, $S\sim D^2$, $S_1/S_2 = (D_1/D_2)^2$ (2 балла).

При использовании телескопа выигрыш составит $(60/6)^2 = 100$ раз (1 балл вычисления). 100 раз это 5^m (2 балла) поэтому мы увидим звёзды вплоть до $6+5=11^m$ (1 балл). Яркость новой в момент вспышки $13-3=10^m$ (1 балл), так что при проницании 11^m это будет доступный для наблюдения объект (1 балл вывод).

Справочные данные:

 $1a.e.=1.496\cdot10^8$ км; 1пк=206265 a.e;

Масса Солнца $2 \cdot 10^{30}$ кг, Земли $6 \cdot 10^{24}$ кг, Марса $6 \cdot 10^{23}$ кг Луны $7 \cdot 10^{22}$ кг;

Радиус Солнца — 6.96·10⁵ км.

Гравитационная постоянная $G=6.67 \cdot 10^{-11} \text{ H*m}^2/\text{кг}^2$;

Скорость света $3 \cdot 10^5$ (км/с)

Диаметр зрачка человека – 6мм. Предельная звёздная величина, наблюдаемая невооружённым глазом $+6^{\rm m}$.