
КРИТЕРИИ ОЦЕНИВАНИЯ

9 класс

9.1. Скопление галактик

Скопление находится от нас на расстоянии $r \approx 100 \, \mathrm{Mnk}$. Его угловой диаметр $\varphi \approx 5^{\circ}$. Оцените радиус R скопления (в Мпк).

Решение

R Из рисунка, $\frac{R}{r} = \operatorname{tg}\left(\frac{\varphi}{2}\right) \Rightarrow R = r \cdot \operatorname{tg}\left(\frac{\varphi}{2}\right)$. (3 балла) $R = R \approx 4,4$ Мпк. (3 балла)

9.2. Система звезды LHS 1140

У этой звезды обнаружена планета, на которой возможна жизнь.

- 1) Параллакс звезды $\pi = 80$ mas. Найдите расстояние r до этой звезды в парсеках (пк).
- 2) В систему звезды отправляется звездолёт, скорость которого v = 0.1c (в единицах скорости света $c = 3.10^8$ м/с). Оцените время такого полёта (в годах). $1 \text{ пк} \approx 3,1 \cdot 10^{16} \text{ м}; 1 \text{ год} \approx 3,2 \cdot 10^7 \text{ c}.$
- 3) Масса планеты $M \approx 6.6 M_{\oplus}$, её радиус $R \approx 1.4 R_{\oplus}$. Здесь $M_{\oplus} = 6.10^{24}$ кг, $R_{\oplus} = 6400$ км масса и радиус Земли соответственно. Вычислите ускорение д свободного падения на поверхности планеты.

Гравитационная постоянная $G = 6.67 \cdot 10^{-11} \text{ H} \cdot \text{m}^2/\text{кг}^2$,

1 mas - 1 миллиарсекунда, кратная доля арсекунды (угловой секунды).

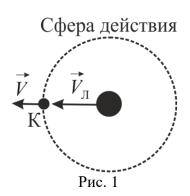
Решение

1) Расстояние до звезды,
$$r = \frac{\Pi \kappa}{\pi''} = \frac{\Pi \kappa}{0.08''} = 12.5 \, \text{пк}$$
. (2 балла)

2) Время полёта,
$$t = \frac{r}{\upsilon}, \tag{1 балл}$$

$$t = 1,3 \cdot 10^{10} \ \mathrm{c} \approx 406 \ \mathrm{лет}. \tag{2 балла}$$

$$t = 1,3 \cdot 10^{10} \text{ c} \approx 406 \text{ лет.}$$
 (2 балла)


3) Ускорение свободного падения,
$$g = \frac{GM}{R^2}$$
, (1 балл)

$$g = 32,9 \text{ м/c}^2 \approx 33 \text{ м/c}^2.$$
 (2 балла)

9.3. Вход космического корабля в сферу действия Луны

Космический корабль (К) входит в сферу действия Луны так, как показано на рисунке. Скорость корабля относительно центра Земли V = 0.2 км/с. Скорость Луны относительно центра Земли $V_{\rm Л} = 1,0$ км/с.

1) С какой скоростью \vec{v} (по модулю и направлению) корабль входит в сферу действия Луны относительно центра Луны? 2) Как в дальнейшем будет двигаться корабль внутри сферы действия и по какой траектории? Как будет изменяться скорость корабля (возрастать, убывать, останется неизменной)?

Решение

Теорема сложения скоростей,
$$\vec{V} = \vec{V}_{\Pi} + \vec{\upsilon} \implies \vec{\upsilon} = \vec{V} - \vec{V}_{\Pi}$$
. (2 балла)

Проецируя это уравнение на горизонтальную ось координат ОХ, сонаправленную с вектором скорости Луны, получаем: $v_{y} = V - V_{\Pi} = -0.8 \text{ km/c}$.

Скорость входа корабля в сферу действия Луны равна $\upsilon = 0.8$ км/с, а вектор этой скорости направлен в центр Луны. (1 балл)

Корабль будет падать на центр Луны по прямолинейной траектории. (1 балл)

Скорость корабля будет увеличиваться под действием тяготения Луны. (1 балл)

9.4. Вокруг "чёрной дыры"

Космический корабль движется вокруг "чёрной дыры" (ЧД) по круговой орбите радиуса

$$r=20\,000\,R_{\rm g}$$
 , где $R_{\rm g}=\frac{2GM}{c^2}$ — гравитационный радиус ЧД, M — масса ЧД, G —

гравитационная постоянная, $c = 3.10^8$ м/с — скорость света в вакууме. Вычислите орбитальную скорость (в единицах скорости света c) космического корабля.

Решение

Уравнение движения для круговых орбит, $m \cdot \frac{v^2}{r} = \frac{GMm}{r^2}$. (2 балла)

Скорость движения по круговой орбите, $\upsilon = \sqrt{\frac{GM}{r}}$. (3 балла)

Т.к. $r = nR_g = n \cdot \frac{2GM}{c^2}$ (в данной задаче $n = 2 \cdot 10^4$), то скорость корабля

$$\upsilon = \frac{c}{\sqrt{2n}} = 5 \cdot 10^{-3} \,\mathrm{c} \,. \tag{3 балла}$$

9.5. Квазар 3С 273

- 1) Переменность источника излучения позволяет оценить размеры области излучения, указать их верхний предел. Оптическое излучение квазара сильно переменно; за время $\tau \approx 1$ год светимость изменялась в десятки и сотни раз (рис. 2). Оцените верхний предел размера $l_{\rm m}$ квазара. Скорость света в вакууме $c = 3 \cdot 10^8$ м/c, 1 год $\approx 3.2 \cdot 10^7$ с.
- **2) Закон Хаббла.** Галактики и квазары удаляются от нас со скоростями υ , пропорциональными расстояниям R до них: $\upsilon = H \cdot R$ (рис. 3). Коэффициент пропорциональности H, его называют постоянной Хаббла, находят из наблюдений. Оцените скорость (в км/с), с которой удаляется от нас квазар, если расстояние до него

 $R = 735 \ {\rm M}$ пк. Постоянную Хаббла $\left({\rm B} \frac{{\rm KM}}{{\rm c} \cdot {\rm M}$ пк) оцените по графику на рис. 3.

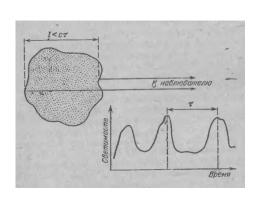


Рис. 2

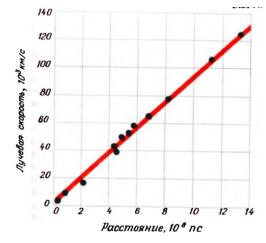


Рис. 3

(пс – устаревшее обозначение парсек)

Решение

1) Так как размер излучающей области $l \le c\tau$, то верхний предел размера квазара

$$l_{\mathrm{m}}=c au$$
 , (1 балл)

$$l_{\rm m} = 9.6 \cdot 10^{15} \,\mathrm{M} \approx 10^{16} \,\mathrm{M}.$$
 (1 балл)

2) Постоянная Хаббла, $H = \frac{\upsilon}{R}.$ (1 балл)

Значения v и R – по графику на рис. 3; $H \approx 100$ км/(с·Мпк). (3 балла)

Скорость квазара, $v = H \cdot R = 73\,500$ км/с. (2 балла)

9.6. Звезда Сириус А

Радиус этой звезды $R = 1,7R_{\odot}$, температура (эффективная) её поверхности T = 9940 К. Экваториальная скорость вращения звезды $v_{\text{экв}} = 16,7$ км/с.

- 1) Вычислите период вращения T_0 звезды (в земных сутках). Радиус Солнца $R_{\odot} = 7.10^8$ м.
- 2) Вычислите светимость L этой звезды (в единицах солнечной светимости $L_{\odot} = 4 \cdot 10^{26}$ Вт). Постоянная Стефана-Больцмана: $\sigma = 5,67 \cdot 10^{-8}$ Вт/(м²·К⁴).
- 3) Вычислите массу M этой звезды (в единицах солнечной массы M_{\odot}) из соотношения

"светимость — масса"
$$\frac{L}{L_{\odot}} = \left(\frac{M}{M_{\odot}}\right)^4$$
.

Решение

1) Период вращения звезды вокруг своей оси $T_0 = 2\pi R/\upsilon_{3KB}$. (1 балл)

 $T_0 = 5.2 \text{ сут.}$ (1 балл)

2) Светимость звезды $L = 4\pi\sigma R^2 T^4$, (1 балл)

 $L = 24,5L_{\odot}.$ (2 балла)

3) Масса звезды, $\frac{M}{M_{\odot}} = \left(\frac{L}{L_{\odot}}\right)^{1/4}$ (2 балла)

 $M = 2,2M_{\odot}.$ (1 балл)