Муниципальный этап Всероссийской олимпиады школьников по химии 2015/2016 учебного года

(теоретический тур)

Решения 10 класс

1.

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
Определены элементы А – сера, В – кислород, С – хлор.	3
Определено соединение – SOCl ₂	2
Вещество гидролизуется в соответствии с уравнением:	3
$SOCl_2 + H_2O = SO_2 + 2HCl$	
Определены газообразные продукты гидролиза:	1
$I - SO_2$	
II - HCl	1
Максимальный балл	10
Все элементы ответа записаны неверно	0

2.

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
При пропускании смеси моноксида и диоксида углерода над раскаленным	1
углем протекает реакция:	
$CO_{2(\Gamma)} + C_{(TB)} \rightarrow 2CO_{(\Gamma)}$	
На основании закона Авогадро находим число моль газов	4
n = V/22, 4 = 8,4/22, 4 = 0,375 (моль)	
Обозначим количество в-ва CO_2 через х (моль), тогда n CO в исходной смеси	
составит (0,375-х) (л).	
Находим массы компонентов смеси:	
$m(CO_2) = n M = 44x;$	
m(CO) = 28(0,375-x).	
$m(\text{смеси}) = m(\text{CO}_2) + m(\text{CO}) = 44x + 28(0,375-x) = 13.$	
Решаем уравнение: x = 0,156 (моль)	
$V(CO_2) = n V_m = 22,4.0,156 = 3,5 (\pi);$	
$V(CO)_{HCX} = 22,4(0,375-0,156) = 4,9 (\pi).$	
В соответствии с уравнением объем СО, образующегося по реакции, V(СО)обр	3
$= 2 \cdot V(CO_2) = 2 \cdot 3,5 = 7 \text{ (\pi)}.$	
$V(CO)_{OOM} = V(CO)_{HCX} + V(CO)_{OOp} = 7 + 4.9 = 11.9 \text{ (II)}.$	
Объемная доля СО в исходной смеси равна:	2
$\varphi = V(CO)_{HCX}/V = 4.9/8,4 = 0.583 (58.3\%)$	
Объемная доля СО ₂ в исходной смеси равна:	
$\phi = 41,7\%$	
Максимальный балл	10
Все элементы ответа записаны неверно	0

3.

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
На основании данных по продуктам горения рассчитывают массы С, Н и,	3
возможно, О:	
$m(C) = n(CO_2) \cdot M(C) = 0.66/44 \cdot 12 = 0.18 (\Gamma)$	
$m(H) = 2n(H_2O) \cdot M(H) = 2.0,18/18 \cdot 1 = 0,02 (\Gamma).$	
Массу кислорода в составе соединения находят по разности:	
m(O) = m(X) - m(H) - m(C) = 0.28 - 0.02 - 0.18 = 0.08	
Находим простейшую формулу соединения:	3
C:H:O = 0.18/12 : 0.02/1 : 0.08/16 = 3:4:1.	
Способность присоединять не более 1 моль брома указывает на наличие	3
двойной связи, а способность вступать в реакцию серебряного зеркала – на	
наличие альдегидной группы. Этому условию единственно удовлетворяет	
формула СН ₂ =СН-СОН (простейшая формула является истинной)	
Искомое соединение – пропеналь (акриловый альдегид)	1
Максимальный балл	10
Все элементы ответа записаны неверно	0

4.

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
При полном гидрировании (каталитическом) этена и ацетилена протекают	1
реакции:	
$C_2H_4 + H_2 = C_2H_6$	
$C_2H_2 + 2H_2 = C_2H_6$	
Обозначим массу этена через х (г), тогда масса ацетилена составит (2,41-х) (г).	4
Находим количества в-ва компонентов смеси:	
$n(C_2H_4) = x/28$ (моль);	
$n(C_2H_2) = (2,41-x)/26.$	
В соответствии с уравнениями объем водорода, пошедший на гидрирование	
этена, составит $V_1(H_2) = 22,4 \cdot x/28$ (л);	
, а на гидрирование ацетилена – $V_2(H_2) = 2.22,4.(2,41-x)/26$ (л).	
Всего на гидрирование израсходовано:	
$V(H_2) = V_1(H_2) + V_2(H_2) = 22,4 \cdot x/28 + 2 \cdot 22,4 \cdot (2,41-x)/26 = 3 \text{ (II)}$	
Решаем уравнение: $x = 1,25 (\Gamma)$ – масса этена.	
$m(C_2H_2) = 2,41-1,25 = 1,16 (\Gamma).$	
$n(C_2H_4) = 0.0446$ (моль);	
$n(C_2H_2) = 0.0446$ (моль).	
$V(C_2H_4) = V(C_2H_2) = 1,0 (\pi);$	
Находим объемные доли газов:	2
$\varphi(C_2H_2) = \varphi(C_2H_4) = 0.5 (50 \text{ o}6\%)$	
Находим среднюю молярную массу смеси газов:	2
$M = \varphi(C_2H_2) \cdot M(C_2H_2) + \varphi(C_2H_4) \cdot M(C_2H_4) = 0,5 \cdot 28 + 0,5 \cdot 26 = 27$ (г/моль)	
Плотность газовой смеси по водороду равна:	1
$D_{H2} = M/M_{H2} = 27/2 = 13,5$	
Максимальный балл	10
Все элементы ответа записаны неверно	0

5.

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
$2Cu(NO_3)_2 = 2CuO + 4NO_2 + O_2$	2
$2NO_2 + H_2O = HNO_2 + HNO_3$	2
$HNO_2 + NH_3 = NH_4NO_2$	2
$NH_4NO_2 = N_2 + 2H_2O$	2
$X = N_2$	2
Максимальный балл	10
Все элементы ответа записаны неверно	0

Решение практического тура муниципального этапа Всероссийской олимпиады школьников по химии 2015/2016 учебного года

10 класс

Содержание верного ответа и указания по	Баллы
оцениванию (допускаются иные формулировки ответа, не искажающие его смысла)	
Вещество оранжевого цвета дихромат калия –	1
K ₂ Cr ₂ O ₇ , голубую окраску имеет медный купорос –	
CuSO ₄ ·5H ₂ O.	
красный CrO_3 $K_2Cr_2O_7 + 2H_2SO_4$ конц. $\rightarrow 2CrO_3 \downarrow + 2KHSO_4 + H_2O$ $Cr_2O_7^{2-} + 2H^+ \rightarrow 2CrO_3 + H_2O$	1 (открытие) 1 (уравнение реакции)
желтый $BaCrO_4$ $K_2Cr_2O_7 + BaCl_2 + H_2O \rightarrow BaCrO_4 \downarrow + 2KCl + H_2CrO_4$ $Ba^{2+} + CrO^{2-} \rightarrow BaCrO_4 \downarrow$	1 (открытие) 1 (уравнение реакции)
зеленый $Cr(OH)_3$ $K_2Cr_2O_7 + 3C_2H_5OH + 4H_2SO_4 \rightarrow$ $\rightarrow 2K_2SO_4 + Cr_2(SO_4)_3 + 3CH_3COH + 7H_2O$	1 (открытие) 2 (уравнения реакций)
$Cr_2O_7^{2-} + 14H^+ + 6 \bar{e} \rightarrow 2 Cr^{3+} + 7H_2O$ *1 $C_2H_5OH - 2\bar{e} \rightarrow CH_3COH + 2H^+$ *3 Суммарно: $Cr_2O_7^{2-} + 3C_2H_5OH + 8H^+ \rightarrow 2Cr^{3+} + 3CH_3COH + 7H_2O$	
$Cr_2(SO_4)_3 + 6NaOH_{6e_3 u_36.} \rightarrow 2Cr(OH)_3 \downarrow + 3Na_2SO_4$ $2Cr^{3+} + 6OH^- = 2Cr(OH)_3$ (или $Cr_2(SO_4)_3 + 3NH_{3 BOJH}. + 3H_2O \rightarrow 2Cr(OH)_3 \downarrow + 3(NH_4)_2SO_4)$	
\mathbf{c} иний $\mathbf{C}\mathbf{u}(\mathbf{O}\mathbf{H})_2$ $2\mathbf{N}\mathbf{a}\mathbf{O}\mathbf{H} + \mathbf{C}\mathbf{u}\mathbf{S}\mathbf{O}_4 \to \mathbf{C}\mathbf{u}(\mathbf{O}\mathbf{H})_2 \downarrow + \mathbf{N}\mathbf{a}_2\mathbf{S}\mathbf{O}_4$ $2\mathbf{O}\mathbf{H}^2 + \mathbf{C}\mathbf{u}^{2+} = \mathbf{C}\mathbf{u}(\mathbf{O}\mathbf{H})_2$	1 (открытие) 1 (уравнение реакции)
фиолетовый [Cu(NH ₃) ₄]SO ₄ · H ₂ O CuSO ₄ + 4NH _{3 конц. водн. p-p} \rightarrow [Cu(NH ₃) ₄]SO _{4 p-p} добавление к полученному фиолетовому раствору этанола приводит к осаждению [Cu(NH ₃) ₄]SO ₄ · H ₂ O	1 (открытие) 1 (уравнение реакции)

Если вещество поглощает все цвета спектра, оно нам	1
кажется <i>черным</i> , если	
отражаются все цвета спектра – вещество <i>белое</i> .	
Максимальный балл	13
Все элементы ответа записаны неверно	0

Примечание:

1) Рекомендации к проведению реакций

Цветовой переход оранжевый →красный

К насыщенному раствору дихромата калия (приготовленному из \sim 0,1 г твердого $K_2Cr_2O_7$ и \sim 1 мл дистиллированной воды) осторожно с помощью пипетки приливают при перемешивании двукратный объем концентрированной серной кислоты. Оксид хрома (VI) постепенно выпадает в виде ярко-красного осадка при охлаждении содержимого пробирки до комнатной температуры.

Цветовой переход оранжевый →желтый

К раствору дихромата калия добавляют по каплям равный объем хлорида бария. Тотчас выпадает желтый осадок хромата бария.

Цветовой переход оранжевый *→...*→зеленый

К 1 мл насыщенного раствора дихромата калия осторожно с помощью пипетки добавляют 5–6 капель концентрированной серной кислоты и приливают при перемешивании равный объем этанола. Спустя 1–2 мин. раствор приобретает зеленую окраску (при необходимости, для ускорения процесса содержимое пробирки можно слегка подогреть на водяной бане).

К полученному раствору добавляют по каплям при перемешивании раствор NaOH (без избытка!) до образования зеленого осадка $Cr(OH)_3$. Для осаждения $Cr(OH)_3$ можно использовать также раствор аммиака, его тоже необходимо добавлять по каплям.

Цветовой переход голубой →синий

К раствору гидроксида натрия добавляют по каплям при перемешивании равный объем раствора сульфата меди (II). Выпадает голубовато-синий осадок гидроксида меди (II). Если поменять последовательность добавления (к раствору соли меди (II) добавлять раствор щелочи) в осадок выпадают голубовато-зеленые основные сульфаты меди (II).

Цветовой переход голубой →фиолетовый

К раствору сульфата меди (II) добавляют по каплям при перемешивании концентрированный раствор аммиака сначала до выпадения осадка, а затем до его полного растворения. В результате образуется фиолетовый раствор, содержащий амминокомплекс меди (II). Для осаждения $[Cu(NH_3)_4]SO_4$ · H_2O к полученному раствору добавляют равный объем этилового спирта.

2) за нарушение ТБ общее количество баллов может быть снижено на 1-3 балла.