Комитет образования и науки Курской области Задания для муниципального этапа всероссийской олимпиады школьников по химии в 2016/2017 учебном году 10 класс

Задание 10-1. (12 баллов)

Плотность по водороду смеси водорода, метана и оксида углерода (II) равна 7,8. Для полного сгорания одного объема этой смеси требуется 1,4 объема кислорода. Определите в % объемный состав смеси.

	T CIMOTHIC	
1	Пусть в смеси было x л водорода, и y литров оксида углерода	3
	(II), тогда объем газа метана [1 - $(x+y)$] л	
	Массы газов при н.у. будут равны:	
	$m(x H_2) = 2x \langle 22,4 (\Gamma) \rangle$	
	$m(y \pi CO) = 28 y (22,4 (г))$	
	$m(CH_4) = 16 [1 - (x+y)] \setminus 22,4 (\Gamma)$	
2	Т.к $D(H_2) = 7.8$, масса 22,4 л смеси = 7,8 · 2	2
	Масса 1 л смеси = $7.8 \cdot 2 \setminus 22.4$ (г)	
	Следовательно	
	$2x \cdot 22,4 + 28 \text{ y } \cdot 22,4 + 16 [1 - (x+y)] \cdot 22,4 = 7,8 \cdot 2 \cdot 22,4$	
	7x - 6y = 0.2	
3	При горении смеси газов протекают следующие реакции:	4
	$2H_2 + O_2 = 2H_2O$	
	$2CO + O_2 = 2CO_2$	
	$CH_4 + 2O_2 = CO_2 + 2H_2O$	
	Исходя из уравнений с водородом прореагировало 0,5 х л	
	кислорода, с угарным газом – 0,5 у л газа, а с метаном $2 \cdot [1 - (x+y)]$	
	л кислорода, всего 1,4 л	
	$0.5 x + 0.5 y + 2 \cdot [1 - (x+y)] = 1.4$	
	x + y = 0.4	
4	Решаем систему уравнений	2
	x + y = 0.4	
	7x - 6y = 0.2	
	$x=0,2$ л H_2	
	$y = 0.2 \pi \text{ CO}$	
	$1 - (x+y) = 0.6 \text{ n CH}_4$	
5	w (H ₂)=20% w (CO)=20% w (CH ₄)=60%	1
	Ответ: w (H ₂)=20% w (CO)=20% w (CH ₄)=60%	
	Итого	12

Задание 10-2. (15 баллов)

Аммиак объемом 100м³ (н.у.) пропустили через реактор, заполненный 500 кг раствора ортофосфорной кислоты с массовой долей 50%. Определите состав в % по массе полученной смеси солей.

1	Рассчитаны количества веществ, вступивших в реакцию $n(NH_3) = 100\ 000 \setminus 22, 4 = 4460\ моль$ $m(H_3PO_4) = 500 \cdot 0, 5 = 250\ кг$ $n(H_3PO_4) = 250\ 000 \setminus 98 = 2550\ моль$	3
2	Расчет по недостатку $NH_3 + H_3PO_4 = NH_4H_2PO_4$ (1) $n(NH_4H_2PO_4) = 2550$ моль	3
3	$n(NH_3)_{oct}$ = 4460 – 2550 = 1910 моль $NH_4H_2PO_4 + NH_3 = (NH_4)_2HPO_4$ (2) $n(NH_4H_2PO_4)_{oct}$ = 2550 – 1910 = 640 моль $n((NH_4)_2HPO_4)$ = 1910 моль	5
4	m (NH ₄ H ₂ PO ₄)= 640 ·115 = 73 000 г = 73 кг m ((NH ₄) ₂ HPO ₄)= 1910· 132 = 252 000 г = 252 кг	2
5		2
	<i>Ответ:</i> w(NH ₄ H ₂ PO ₄)= 22,5% w((NH ₄) ₂ HPO ₄)= 77,5%	
	Итого	15

Задание 10-3. (15 баллов)

Водный раствор едкого натра подвергали электролизу током 10A в течение 268 часов. После окончания электролиза осталось 100г 24% раствора NaOH. Рассчитайте первоначальную концентрацию раствора NaOH.

	Tomonic	
1	Составлено уравнение электролиза	3
	$NaOH + 2H_2O$ эл-з $\rightarrow 2H_2\uparrow + NaOH + O_2\uparrow$	
	или $2H_2O$ эл-з $\rightarrow 2H_2\uparrow + O_2\uparrow$	
	на катоде: $2H_2O + 2e \rightarrow H_2↑ + 2OH^-$	
2	Найдена масса NaOH после окончания электролиза	1
	$m(NaOH) = m (p-pa) \cdot w = 100 \cdot 0.24 = 24 \Gamma$	
	(F Pu) 11 (F Pu) 12 2 1 2 1 1	
3	По закону Фарадея найдена масса выделившегося на катоде Н ₂	3
	$m = (M \setminus n F) \cdot I \cdot t$, где	
	М- молярная масса (г\моль)	
	п-число электронов, участвующих в процессе	
	F-постоянная Фарадея (96500 Кл\моль)	
	І- сила тока(А)	
	t- время (сек)	
	$m(H_2)=(2 \ 2 \cdot 96 \ 500) \cdot 10 \cdot (268 \cdot 3600) = 99,37 \ \Gamma$	
4	$n(H_2) = 99,37 \setminus 2 = 49,68$ моль	1
5	$n(H_2)=n(H_2O)=49,68$ моль	2
	$m(H_2O)_{\text{подвергшаяся электролизу}} = 49,68 \cdot 18 = 894,24 \ \Gamma$	
	(-),	
6	$m(H_2O)$ _{из оставшегося раствора NaOH} = $100 - 24 = 76$ г	2
	(2) his deflabilier oea paerisopa rateri	
7	Исходная масса раствора = $894,24 + 76 + 24 = 994,24$ г	2
	1 1 22 /2 2 2 2 2 2 2	
8	w (NaOH) = 24 \994,24 · 100% = 2,41%	1
	Ответ: 2,41%	
	Итого	15
	111010	10

Задание 10-4. (12 баллов)

При гидрировании ацетилена объемом 336 мл (н.у.) получили смесь этана и этилена, которая обесцвечивает 4% раствор брома в четыреххлористом углероде массой 20 г . Определите массовые доли (%) газов в полученной смеси

	1 cmenne	
1	Записаны уравнения реакций	3
	$C_2H_2 + H_2 \rightarrow C_2H_4 \tag{1}$	
	$C_2H_2 + 2 H_2 \rightarrow C_2H_6$ (2)	
	В реакцию с Br ₂ вступает лишь этилен по реакции:	
	$C_2H_4 + Br_2 \rightarrow C_2H_4Br_2 \tag{3}$	
2	$n(C_2H_2)$ исх= 0.336 л \ 22.4 л\моль = 0.015 моль	3
	$m(Br_2) = 20.0,04 = 0.8 r$	
	$n(Br_2) = 0.8 \setminus 160 = 0.005$ моль	
3	$n(C_2H_4)=n(Br_2)=0.005$ моль	2
	$n(C_2H_2)$ на образ. этилена =0,005 моль	
4	$n(C_2H_2)$ на образ.этана= $0.015-0.005=0.01$ моль	1
5	$m(C_2H_4)=0.005 \cdot 28 = 0.14 \Gamma$	1
	$m(C_2H_6)=0.01 \cdot 30 = 0.3 \Gamma$	
6	$w(C_2H_4)=0.14 \setminus 0.14 +0.3 =0.32 = 32\%$	2
	$w(C_2H_6)=0.3 \ \ 0.44=0.68=68\%$	
	Ответ:32%, 68%	
	Итого	12

Задание 10-5. (15 баллов)

Квасцы - искусственные кристаллы, двойные соли кристаллогидратов трех и одновалентных металлов. Применяются в текстильной, кожевенной промышленности.

Чтобы установить формулу хромокалиевых квасцов (х K_2SO_4 · у $Cr_2(SO_4)_3$ ·z H_2O) был приготовлен 1 л раствора, содержащего 99,8 г этого вещества. При обработке 200 мл раствора квасцов избытком раствора нитрата бария образовалось 18,64 г осадка. При обработке такого же объема хромокалиевых квасцов избытком раствора аммиака образовалось 4,12 г осадка. Установите формулу соединения.

-		
1	Записаны уравнения протекающих химических реакций	3
	$K_2SO_4 + Ba(NO_3)_2 = BaSO_4 \downarrow + 2KNO_3 $ (1)	
	$Cr_2(SO_4)_3 + 3 Ba(NO_3)_2 = 3 BaSO_4 \downarrow + 2 Cr(NO_3)_3$ (2)	
	$Cr_2(SO_4)_3 + 6NH_4OH = 2 Cr(OH)_3 \downarrow + 3(NH_4)_2SO_4$ (3)	
2	Рассчитано сколько гр квасцов содержится в 200 мл раствора:	1
	$m(квасцов) = 99.8 \cdot 200 \setminus 1000 = 19.98 \ r$	1
	ті(квасцов)— 99,8 200 \ 1000 — 19,98 I	
3	$n (Cr(OH)_3) = 4.12 \setminus 103 = 0.04$ моль	1
5	II (CI(OII)3) = 4,12 \ 103 = 0,04 MOJIB	1
4	$n (Cr_2(SO_4)_3) = 0.04 \setminus 2 = 0.02$ моль	2
-	$m(Cr_2(SO_4)_3) = 0.02 \cdot 392 = 7.84 \Gamma$	
	$III(C1_2(5O4)_3) = 0.02 392 = 7.041$	
5	$n (BaSO_4) = 18,64 \setminus 233 = 0,08$ моль (по уравнению (1) и (2))	1
	(1) II (2))	1
6	$n (SO_4)^{2-}$) из $Cr_2(SO_4)_3 = 0.02 \cdot 3 = 0.06$ моль	2
	$n (SO_4)^{2-}$) из $K_2SO_4 = 0.08 - 0.06 = 0.02$ моль	
7	$n(K_2SO_4) = 0.02$ моль	2
	$m (K_2SO_4) = 0.02 \cdot 174 = 3.48 \Gamma$	
8	$m(H_2O) = 19.98 - 7.84 - 3.48 = 8.66 \Gamma$	2
	$n(H_2O) = 8,66 \setminus 18 = 0,48$ моль	
9	Произведя, расчеты имеем мольные соотношения	1
	$(K_2SO_4): Cr_2(SO_4)_3: H_2O$	
	0,02 : 0,02 : 0,48 или	
	1 : 1 : 24	
	Ответ: формула K ₂ SO ₄ · Cr ₂ (SO ₄) ₃ · 24 H ₂ O	
	Итого	15
	111010	13

Задание 10-6. (10 баллов)

Простое твердое светло-серое вещество А при взаимодействии с раствором кислоты или щелочи выделяет одно и то же количество газа Б, не имеющего цвета и запаха. Соответственно в растворах образуются вещества В и Γ . При действии на вещество В эквивалентного раствора щелочи выпадает белый осадок, растворимый в избытке щелочи с образование вещества Γ . Определите A, Б и Γ , если известно, что при растворении 10,8 Γ вещества A выделяется 13,44 Γ (н.у.) газа Γ .

1	Схемы процессов:	1
	$A + HCl \rightarrow F\uparrow + B$	
	$A + NaOH \rightarrow F \uparrow + \Gamma$	
	$B + NaOH \rightarrow X \downarrow$	
	$X + NaOH_{\text{\tiny M36}} \rightarrow \Gamma$	
2	Согласно условию задачи металл обладает амфотерными свойствами. Рассмотрим алюминий:	1
3	$2Al + 6NaOH = 2AlCl_3 + 3H_2 \uparrow$	4
	$2A1 + 2NaOH + 6 H_2O = 2Na[Al(OH)_4] + 3H_2\uparrow$	
	$AlCl_3 + 3NaOH = Al(OH)_3 \downarrow + 3NaCl$	
	$Al(OH)_3\downarrow + NaOH$ изб=Na[Al(OH) ₄]	
4	$n(H_2)=V \setminus V_m = 13,44 \setminus 22,4 = 0,6$ моль	1
5	$n (Al) = 0.6 \cdot 2 \setminus 3 = 0.4 \text{ моль}$	2
	$M(Al)=10,8$ \ $0,4=27$ г\моль, следовательно металл выбран верно.	
	Ответ:	1
	A - Al	
	Б- Н2	
	Γ - Na[Al(OH) ₄]	
	Итого	10

Задание 10-7. (15 баллов)

Реакция при температуре 50^{0} С протекает за 2 минуты 15 секунд. За сколько времени закончится эта реакция при температуре 70^{0} С и температурном коэффициенте =3.

Задача №9. Решение

1	Влияние температуры на скорость химической реакции согласуется с правилом Вант-Гоффа: $V_2 \backslash \ V_1 = \ \gamma^\Delta t \backslash 10, \ \ \text{где}$	5
	γ — температурный коэффициент Δt -изменение температуры Рассчитаем, во сколько раз увеличится скорость реакции: $V_2 \ V_1 = 3^{(70-50)}10=3^2=9$	
	т.е. скорость увеличится в 9 раз.	
2	Скорость реакции обратно пропорциональна времени $V_2 \backslash V_1 = t_1 \backslash t_2$,	10
	Ответ: 15 секунд	
	Итого	15