Решение экспериментального тура муниципального этапа

Всероссийской олимпиады школьников

по химии 2016/2017 учебного года

11 класс

Содержание верного ответа и указания по оцениванию	Баллы
1. Координационная формула моногидрата сульфата	
тетраамминмеди(II) – [Cu(NH $_3$) $_4$]SO $_4$ ·H $_2$ O (внутренняя сфера в	1.5
квадратных скобках, остальное – внешняя);	
Ион комплексообразователь — Cu^{2+}	0.5
Лиганды — NH_3	0.5
2. Типы химических связей присутствуют в кристаллическом	
$[Cu(NH_3)_4]SO_4\cdot H_2O$:	
– ковалентные полярные (связи N–H, Cu–N, S=O, O–H),	0.5
– ионные (между комплексными частицами $[Cu(NH_3)_4]^{2+}$ и	0.5
сульфат-ионами,	
- водородные (например, между молекулами кристаллизационной	0.5
воды).	
3. Уравнения реакций, которые протекали при добавлении а)	
недостатка и б) избытка аммиака к раствору сульфата меди(II):	
$CuSO_4 + 2NH_{3 \text{ водн.(недостаток)}} + 2H_2O \rightarrow Cu(OH)_2 \downarrow + (NH_4)_2SO_4 (a)$	2
$\mathrm{Cu}^{2+} + \mathrm{2NH_{3}}_{\mathrm{водн.(недостаток)}} + \mathrm{2H_{2}O} \rightarrow \mathrm{Cu(OH)_{2}} \downarrow + \mathrm{2NH_{4}}^{+}$ ионная	1
форма (а) (допускается также запись уравнения образования	
вместо гидроксида меди ее основных солей)	
$CuSO_4 + 2NH_{3 \text{ водн.(избыток)}} \rightarrow [Cu(NH_3)_4]SO_4 (б)$	2
$Cu^{2+} + 4NH_{3 \text{ водн. (избыток)}} \rightarrow [Cu(NH_3)_4]^{2+}$ ионная форма (б)	1
4. Для расчета выхода продукта реакции (η) необходимо знать	
массу полученного соединения $(m_{3\kappa cn.})$ и массу продукта,	
рассчитанную на введенное количество медного купороса:	1
$\eta = m_{\text{эксп.}} * 100\% / m_{\text{теор.}}$	1

$m_{\text{Teop.}} = m_{\text{HaBecku}}(\text{CuSO}_4 \cdot 5\text{H}_2\text{O}) * M([\text{Cu(NH}_3)_4]\text{SO}_4 \cdot \text{H}_2\text{O})$	1
$M(CuSO_4 \cdot 5H_2O)$	
$M([Cu(NH_3)_4]SO_4 \cdot H_2O) = 246 \ \Gamma/моль$	
$M(CuSO_4 \cdot 5H_2O) = 250 \ \Gamma/моль$	
Примечание: поскольку значение рассчитанного участником	
выхода сильно влияет на выставляемый балл, членам комиссии	
следует обратить внимание на полноту высушивания осадка и	
правильность его взвешивания участником	
5. Ацетон используется для осаждения комплексного соединения,	2
т.к. моногидрат сульфата тетраамминмеди(II) в нем не	
растворяется.	
6. Выход комплексного соединения:	
≥70 %;	8
69 – 60 %;	7
59 – 50 %;	6
49-40 %;	5
39 – 30 %;	3
менее 30 %.	1
Максимальный балл	22 балла

В случае проведения виртуального эксперимента задание экспериментального тура оценивается максимально из 14 баллов.