Комитет образования и науки Курской области Решения заданий для муниципального этапа всероссийской олимпиады школьников по химии в 2016/2017 учебном году

9 класс

Задание 9-1.

При приливании раствора, содержащего 1,02 г соли сероводородной кислоты, к раствору, содержащему 2,7 г хлорида двухвалентного металла, выпало 1,92 г осадка. Какие соли взяты для проведения реакции, если они прореагировали полностью?

Решение.

гешение.	
Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
1. Масса осадка не превышает массу одного из реагентов, следовательно, в осадок выпало одно вещество: либо хлорид, либо сульфид. Для всех металлов, хлориды которых нерастворимы, сульфиды тоже нерастворимы. В то же время не существует растворимый сульфид, соответствующий нерастворимому хлориду, из чего следует, что в осадок выпал сульфид того двухвалентного металла, который входил до реакции в состав хлорида.	1
2. Обозначим хлорид металла как XCl ₂ , соль сероводородной кислоты как YS и образовавшийся сульфид как XS, тогда: n(XCl ₂) = n(XS) m(XCl ₂) = m(XS)	3
3. Количество вещества хлорида меди равно: $2,7/135 = 0,02$ моль	1
 4. Определим молярную массу Y. n(YS) = n(CuS) = 0,02 моль M(YS) = 1,02/0,02 = 51 г/моль, M(Y) = 19 г/моль. Следовательно, исходная соль – гидросульфид аммония NH4HS. Ответ: CuCl₂ и NH4HS 	3
Все элементы ответа записаны неверно	0
Максимальный балл	8

Задание 9-2.

Установите формулу неорганического соединения, содержащего 36,51% натрия, 38,09% кислорода и 25,4% некоторого элемента. Назовите это соединение и укажите класс, к которому оно относится.

Решение.

1 00000000	
Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
1. Напишем в общем виде формулу данного органического соединения $Na_x Э_y O_z$	1
2. Примем массу этого вещества за 100 г, тогда m(Na) = 36,51 г; m(O) = 38,09 г.	1
3. Находим количества вещества натрия и кислорода:	1
$n(Na) = 36,51/23 = 1,587; \ n(O) = 38,09/16 = 2,381$ моль	
4. Определяем отношение n(Na): n(O) 1,587: 2,381 = 1: 1,5 = 2:3	1
Простейшая формула вещества $Na_2 Э_y O_3$	
5. Находим молярную массу вещества:	1
M (Na2O3) = 2M(Na)/0,3651 = 126 г/моль (или через массовую долю	
кислорода)	
6. Определяем молярную массу элемента:	4
126 - 46 - 48 = 32 г/моль, при $y = 1$, искомый элемент –сера.	
Проверяем формулу: $25,4/32 = 0,794$ моль	
n(Na) : n(S) : n(O) 1,587: 2,381 : 0,794 = 2:1:3	
Истинная формула Na ₂ SO ₃	
Это сульфит натрия, соль	
Ответ: сульфит натрия, соль.	
Все элементы ответа записаны неверно	0
Максимальный балл	9

Задание 9-3.

Общее число атомов в образце оксида металла IIA группы, в котором массовая доля кислорода больше массовой доли металла, равна $3.01 \cdot 10^{21}$. Определите оксид, вычислите массу образца оксида.

Решение.

Содержание верного ответа и указания по оцениванию		
(допускаются иные формулировки ответа, не искажающие его смысла)		
1. Условиям задачи отвечает только один металл IIA группы – бериллий,	1	
массовая доля которого в оксиде меньше массовой доли кислорода.		
Оксид – это ВеО		
2. Определяем количество вещества оксида:	2	
$n($ атомов оксида $)=3,01\cdot 10^{21}/6,02\cdot 10^{23}=0,005$ моль		
n(BeO) = 0.005/2 = 0.0025моль		
3. Рассчитываем массу образца оксида:	1	
$m(BeO) = 25 \cdot 0,0025 = 0,0625\Gamma$		
Ответ: ВеО, 0,0625 г		
Все элементы ответа записаны неверно	0	
Максимальный балл	4	

Задание 9-4.

Три идентичных сосуда (равного объема и равной массы) содержат газы, находящиеся при одинаковых условиях. Первый сосуд заполнен водородом и имеет массу 24,8 г; масса второго сосуда, заполненного кислородом, составляет 36,8 г. Третий сосуд содержит смесь азота и неизвестного газа (объемная доля азота в смеси 40%) и имеет массу 33,28 г. Определите молекулярную массу неизвестного газа.

Решение

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
1. Пусть масса сосудов равна х г, тогда	3
$m(H_2) = 24.8 - x \Gamma$, $m(O_2) = 36.8 - x \Gamma$	
Так как газы находятся при одинаковых условиях, то	
$n(H_2) = n(O_2)$	
24,8 - x 36,8 -x	
$=$ $x = 24$ г; масса сосудов составляет 24 г	
2 16	
2. Количество вещества газов в каждом из сосудов равно	1
(24.8 - 24)/2 = 0.4 моль или $(36.8 - 24)/32 = 0.4$ моль	
3. $n(N_2) = 0.4 \cdot 0.4 = 0.16$ моль	2
n (неизвестного газа) = $0.4 - 0.16 = 0.24$ моль	
4. Масса газов в третьем сосуде равна	3
$m(\Gamma a 3 O B) = 33,28 - 24 = 9,28 \Gamma$	
m (неизвестного газа) = $9.28 - 0.16 \cdot 28 = 4.8 \ \Gamma$	
M(неизвестного газа) = 4,8/0,24 = 20 г/моль	
Ответ: 20 г/моль	
Все элементы ответа записаны неверно	0
Максимальный балл	9

Решение

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
1. $m(O_2) - m(H_2) = 36.8 - 24.8 = 12 \Gamma$	2
$(M(O_2) - M(H_2)) \cdot n = 12$	
n = 0,4 моль	
2. Масса сосудов равна	1
$36,8$ - $32\cdot0,4$ = 24 г или $24,8$ - $2\cdot0,4$ = 24 г	
3. Так как газы находятся в одинаковых условиях, то в любом из сосудов	3
находится $0,4$ моль газа или смеси газов.	
$n(N_2) = 0.4 \cdot 0.4 = 0.16$ моль	
n (неизвестного газа) = $0.4-0.16=0.24$ моль	
4. Масса газов в третьем сосуде равна	3
$m(\Gamma a 3 O B) = 33,28 - 24 = 9,28 \Gamma$	
m (неизвестного газа) = $9.28 - 0.16 \cdot 28 = 4.8 \ \Gamma$	
M(неизвестного газа) = $4.8/0.24 = 20$ г/моль	
Ответ: 20 г/моль	
Все элементы ответа записаны неверно	0
Максимальный балл	9

Задание 9-5.

Газ, выделившийся при обработке гидрида кальция водой, пропустили над раскаленным оксидом железа (III). Произошло уменьшение массы твердого вещества на 16 г. Найдите массу исходного гидрида.

Решение.

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
1. $CaH_2 + 2H_2O = Ca(OH)_2 + 2H_2\uparrow (1)$	2
$3H_2 + Fe_2O_3 = 2Fe + 3H_2O$ (2)	
2. Уменьшение массы твердого остатка происходит за счет превращения	3
оксида железа в железо: $m(Fe_2O_3) - m(Fe) = 16$ г	
Пусть количество вещества оксида железа $n(Fe_2O_3) = x$ моль, тогда по	
уравнению (2) n(Fe) = 2x моль	
160x - 112x = 16; x = 1/3 моль	
3. По уравнению (2) $n(H_2) = 3n(Fe_2O_3) = 1$ моль	3
По уравнению (1) $n(CaH_2) = 1/2n(H_2) = 0,5$ моль	
$m(CaH_2) = 0.5 \cdot 42 = 21 \Gamma$	
Ответ: 21 грамм	
Все элементы ответа записаны неверно	0
Максимальный балл	7

Задание 9-6.

В распоряжении лаборанта имеется 5%-ный раствор сульфата натрия и кристаллическая глауберова соль $Na_2SO_4 \cdot 10H_2O$. В каком массовом соотношении лаборант должен их взять, чтобы приготовить раствор с массовой долей сульфата натрия 20%?

Решение.

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	Dunin
1. Пусть имеется 100 г 5% раствора сульфата натрия. Масса сульфата натрия в 100 г 5% раствора равна 5 г.	1
2. Обозначим за X количество вещества натрия сульфата, которое необходимо добавить, тогда $m(Na_2SO_4)=142x$ г. $n(Na_2SO_4)=n(Na_2SO_4\cdot 10H_2O)$, следовательно $m(Na_2SO_4\cdot 10H_2O)=322x$ г	2
3. Составляем уравнение: $5 + 142x$ $0,2 =$	2
4. Находим массовое соотношение: 100:62,15 = 1,61	1
Ответ: 1,61	
Все элементы ответа записаны неверно	
Максимальный балл	6

Задание 9-7. Мысленный эксперимент

Известно, что в четырех колбах находятся растворы азотной кислоты, карбоната калия, нитрата серебра и хлорида бария. Не используя других реактивов, определите, в какой колбе находится каждое из веществ. Опишите свои наблюдения при смешивании растворов в форме таблицы. Приведите уравнения соответствующих химических реакций.

Решение.

		1 СШ	ение.		
Содержание верного ответа и указания по оцениванию					Баллы
(допускан	отся иные формулі	ировки ответа, не	искажающие его	смысла)	
Из каждой колбы отбираем пробы в 4 пробирки и попарно сливаем содержимое пробирок. Составляем уравнения реакций, которые могут при этом протекать. 1. $2HNO_3 + K_2CO_3 = 2KNO_3 + H_2O + CO_2 \uparrow$ 2. $K_2CO_3 + 2AgNO_3 = 2KNO_3 + Ag_2CO_3 \downarrow$ 3. $K_2CO_3 + BaCl_2 = 2KCl + BaCO_3 \downarrow$ 4. $AgNO_3 + BaCl_2 = AgCl \downarrow + Ba(NO_3)_2$				4	
No॒	1	2	3	4	
1	XXXXX	Газ (СО2)	Изменений нет	Изменений нет	1
2	Газ (СО ₂)	XXXXX	Осадок	Осадок плотный (кристалличес кий)	1
3	Изменений нет	Осадок	XXXXX	Белый творожистый осадок	1
4	Изменений нет	Осадок плотный (кристалличес кий)	Белый творожистый осадок	XXXXX	1
Вывод	HNO ₃	K ₂ CO ₃	AgNO ₃	BaCl ₂	1
Все элементы ответа записаны неверно				0	
Максимальный балл				9	

Литература:

- 1. Литвинова Т.Н. Химия для поступающих в вузы/Т.Н.Литвинова и др.- М.:ООО «Издво Оникс»:ООО «Изд-во «Мир и образование», 2009.-832с.
- 2. Свитанько И. В., Кисин В. В., Чуранов С. С. Стандартные алгоритмы решения нестандартных химических задач. М., Химический факультет МГУ им. М. В. Ломоносова, 2012. 253с.
- 3. Олимпиадные задания по химии/ Сост.: Глазкова О.В., Лазарева О.П.; МО РМ, МРИО.- Саранск, 2005.-43 с.
- 4. Химия: сборник олимпиадных задач. Школьный, муниципальный, региональный этапы. 9-11 классы: учебно-методическое пособие/ Под ред. В.Н. Доронькина.-Изд. 4-е.- Ростов н/Д: Легион, 2013.-280 с.