Комитет образования и науки Курской области Решения заданий для муниципального этапа всероссийской олимпиады школьников по химии в 2018/2019 учебном году

10 класс

Задание 10-1.

Бинарное соединение имеет ионное строение. Общее число электронов в положительном ионе превышает число электронов в отрицательном ионе в 1,8 раза, а заряды ядер двух элементов отличаются в 2,5 раза. Установите формулу соединения, предложите два способа его получения.

Решение.

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
1. Оба иона, вероятнее всего, имеют электронные оболочки инертных	2
газов. По соотношению числа электронов подходят Ne (Z= 10) и Ar (Z =	
18): 18/10 = 1,8	
2. Это означает, что у отрицательного иона 10 электронов (меньше), тогда	1
возможные ионы F и O^2 .	
3. У положительного иона 18 электронов (больше), возможные ионы: K ⁺ и Ca ²⁺ .	1
4. Отношение зарядов ядер 2,5 соответствует оксиду кальция CaO: $Z(Ca)/Z(O) = 20/8 = 2,5$	2
5. Способы получения:	2
$2Ca + O_2 = 2CaO(t^0)$	
$CaCO_3 = CaO + CO_2(t^{o})$	
Возможны также другие способы, например:	
$Ca(OH)_2 = CaO + H_2O(t^0)$	
Все элементы ответа записаны неверно	0
Максимальный балл	8

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
1. Пусть число электронов в анионе равно X, тогда число электронов в катионе равно 1,8 X.	1
2. Пусть атом элемента 1 (Э ₁) в бинарном соединении отдал у электронов, тогда атом элемента 2 (Э ₂) принял у электронов. Составим уравнение: $\frac{Z_{(31)}}{Z_{(32)}} = 2,5 = \frac{1,8X+y}{X-y}$ $X = 5y$	2
3. $y = 1$ $X = 5$ (в анионе $5\overline{e}$, в катионе $9\overline{e}$): условиям не удовлетворяет. $y = 2$ $X = 10$ Число электронов в анионе 10, в катионе 18 (каждый ион имеет электронную оболочку инертного газа): это CaO $\frac{Z_{(Ca)}}{Z_{(0)}} = 2,5$	3
 4. Способы получения: 2Ca + O₂ = 2CaO (t°) CaCO₃ = CaO + CO₂ (t°) Возможны также другие способы, например: Ca(OH)₂ = CaO + H₂O (t°) 	2

Все элементы ответа записаны неверно	0
Максимальный балл	8

Задание 10-2.

Через герметичный и очень прочный сосуд («бомбу»), полностью заполненный подкисленной водой, пропустили электрический ток. Какое давление (в атмосферах) развилось бы в «бомбе» при полном разложении воды (н.у.)?

Решение.

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
1. Пусть имеется 1 л воды, $m(H_2O) = 1000$ г, $n(H_2O) = 1000/18 = 55,56$ моль	1
2. Электролиз воды:	1
$2H_2O = 2H_2 + O_2$	
3. $n(H_2) = n(H_2O) = 55,56$ моль, $n(O_2) = \frac{1}{2} n(H_2O) = 27,78$ моль	2
V (газов) = 22,4 · 83,34 = 1867 л	
4. Объем системы не изменился, следовательно, давление возросло в 1867	1
раз и стало равным 1867 атмосфер.	
Все элементы ответа записаны неверно	0
Максимальный балл	5

Задание 10-3.

Для устойчивого горения пиротехнической смеси ($KClO_3 + C$) без доступа воздуха необходимо, чтобы на 1 г этой смеси исходных веществ выделялось не менее 1,5 кДж теплоты. Энтальпия сгорания угля равна -394 кДж/моль. Энтальпия реакции: $KClO_3 = KCl + 1,5O_2$ равна -48 кДж на 1моль $KClO_3$.

Вычислите минимальную массу (г) угля (допустимо считать его чистым углеродом), которую нужно добавить к 100 г хлората калия для устойчивого горения смеси.

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
1. Термохимическое уравнение реакции горения угля:	1
$C (тв.) + O_2(г.) = CO_2 (г.) + 394 кДж$	
2. При сгорании 1 моль (соответственно 12 г) углерода выделяется 394 кДж	1
теплоты. Для достижения устойчивого горения надо взять х г угля, тогда	
масса пиротехнической смеси будет составлять:	
m = 100 + x	
3. При горении <i>x</i> г углерода выделяется (394• <i>x</i> /12) кДж	2
При разложении 100 г KClO ₃ выделяется (48•100/122,5) кДж	
4. При горении смеси массой $m = (100 + x)$ выделится:	1
((394•х/12) + (48•100/122,5)) кДж	
5. По условию для устойчивого горения необходимо, чтобы на 1 г смеси	2
выделялось не менее 1,5 кДж. Из получившегося уравнения:	
$[(394 \cdot x / 12) + (48 \cdot 100 / 122, 5)]/(100 + x) = 1,5$	
находим, что $x = 3,54 \Gamma$	
Ответ. К 100 г хлората калия необходимо добавить 3,54 г угля.	
Все элементы ответа записаны неверно	0
Максимальный балл	7

Задание 10-4.

При взаимодействии пирита с избытком азотной кислоты выделилось 3,667 л газа, плотность которого при 1 атм. и 25° С составила 1,227 г/л. В результате реакции образовался раствор массой 49,1 г, в котором массовая доля азотной кислоты в три раза превышает массовую долю серной кислоты. Рассчитайте массовую долю азотной кислоты в исходном растворе.

Решение.

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	2000000
1. Найдем молярную массу выделившегося газа: M = ρ RT / p = 30 г/моль	2
– это газ NO.	
2. $FeS_2 + 8HNO_3 \rightarrow 2H_2SO_4 + 5NO\uparrow + Fe(NO_3)_3 + 2H_2O$	1
3. Выделилось n(NO) = 101,325 · 3,667 / (8,31 · 298) = 0,15 моль	1
4. Образовалось $n(H_2SO_4) = 2/5n(NO) = 0.06$	3
Вступило в реакцию:	
пирита $n(FeS_2) = 1/5 \ n(NO) = 0.03 \ моль$	
$n(HNO_3) = 8/5 n(NO) = 0.24$ моль	
5. $m(H_2SO_4) = 0.06 \cdot 98 = 5.88 \Gamma$	2
По условию задачи в получившемся растворе содержится еще 5,88 · 3	
= 17,64 г азотной кислоты	
6. $m(HNO_3)$ в исходном растворе = $m(HNO_3)$ прореаг. + $m(HNO_3)$ остав.	3
$m(HNO_3)$ прореаг. = 0,24 · 63 = 15,12 г	
$m(HNO_3)$ в исходном растворе = $15,12 + 17,64 = 32,76$ г	
7. Масса исходного раствора:	3
$m (p-pa (HNO_3) = 49,1 - m(FeS_2) + m(NO)$	
$m (FeS_2) = 0.03 \cdot 120 = 3.6 \Gamma$	
$m(NO) = 0.15 \cdot 30 = 4.5 \Gamma$	
m (p-pa (HNO ₃) = $49.1 - 3.6 + 4.5 = 50 \Gamma$	
8. Массовая доля азотной кислоты в исходном растворе:	1
$\omega(\mathrm{HNO_3}) = 32{,}76 \: / \: 50 = 0{,}655 \:$ или $65{,}5\%$	
Все элементы ответа записаны неверно	0
Максимальный балл	16

Задание 10-5.

Кристаллическое вещество A, отличающееся высокой твердостью, — соединение двух элементов, нерастворимое в кислотах, растворяется только в смеси азотной и фтористоводородной кислот при нагревании. При упаривании полученного раствора он полностью испаряется, не оставляя твердых продуктов. При сплавлении вещества A с избытком гидроксида натрия в присутствии кислорода с последующим растворением продуктов в воде получен раствор, при подкислении которого наблюдается одновременно выделение газа и образование осадка. Определите вещество A, если известно, что массовая доля одного из элементов в нем составляет 70%. Напишите уравнения упомянутых реакций.

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
1. Растворение в НF, а также выпадение осадка при подкислении указывает	2
на кремний, т.к. при этом образуется нерастворимая кремневая кислота.	
2. Выделение газа при подкислении щелочного раствора означает, что в	2
растворе карбонат или сульфит, однако сульфит не мог получиться в	
присутствии кислорода. Следовательно в составе вещества А	

присутствует углерод.	
3. Вещество А – это карбид кремния (карборунд) SiC.	2
$\omega(Si) = Ar(Si)/Mr(SiC) = 28/40 = 0,7$ или 70%	
4. $3SiC + 8HNO_3 + 12HF = SiF_4 + 3CO_2 + 8NO + 10H_2O$	3
$SiC + 4NaOH + 2O_2 = Na_2SiO_3 + Na_2CO_3 + 2H_2O$	
$Na_2SiO_3 + Na_2CO_3 + 4HCl = CO_2\uparrow + H_2SiO_3\downarrow + 4NaCl + H_2O$	
Все элементы ответа записаны неверно	0
Максимальный балл	9

Задание 10-6.

Некоторый углеводород линейного строения содержит одну двойную связь и одну тройную связь. Этот углеводород смешали с эквивалентным количеством кислорода и подожгли. По завершении реакции горения объем смеси не изменился. Определите строение углеводорода. Напишите для этого углеводорода уравнения реакций: одну реакцию присоединения, одну реакцию замещения и одну реакцию окисления.

Решение.

Решение.	
Содержание верного ответа и указания по оцениванию	Балл
(допускаются иные формулировки ответа, не искажающие его смысла)	Ы
1. Общая формула такого углеводорода СnH2n-4	2
$C_nH_{2n-4} + (1,5n-1) O_2 = n CO_2 + (n-2) H_2O$	
2. Объем смеси не изменился, т.е. не изменилось число молей.	4
1 + 1,5n - 1 = n + n - 2	
n = 4	
$CH_2=CH-C\equiv CH$	
3. Реакция присоединения:	6
$CH \equiv C - CH = CH_2 + HC1 \longrightarrow CH_2 = C - CH = CH_2$	
Ċı	
Хлоропрен	
(2-хлорбутадиен-1,3)	
Реакция замещения:	
CH_2 CH CH CH CH CH CH CH CH	
Реакция окисления:	
5CH ₂ ==CH-C==CH + 18KMnO ₄ + 27H ₂ SO ₄ ->	
\longrightarrow 10CO ₂ + 18MnSO ₄ + 32H ₂ O + 9K ₂ SO ₄ + 5HOOC —— COOH	
или:	
$CH_2 \longrightarrow CH \longrightarrow C \longrightarrow CH + 4KMnO_4 + 6H_2SO_4 \longrightarrow 4CO_2 + 4MnSO_4 + 8H_2O + 2K_2SO_4$	
Возможны другие варианты реакций.	
, 4, 5 1 1 ,	
Все элементы ответа записаны неверно	0
Максимальный балл	12

Задание 10-7.

Напишите уравнения реакций, соответствующие следующей последовательности превращений:

евращений:
$$C_3H_7Br \longrightarrow X \longrightarrow C_6H_{13}Br \longrightarrow C_6H_{12} \longrightarrow C_3H_6O \longrightarrow C_4H_{10}O_2$$
 $C_5H_{10}O_2$

Укажите структурные формулы веществ и условия протекания реакций.

Содержание верного ответа и указания по оцениванию	Балл
(допускаются иные формулировки ответа, не искажающие его смысла)	Ы
1. $2(CH_3)_2CHBr + 2Na \rightarrow (CH_3)_2CH-CH(CH_3)_2 + 2NaBr;$ (реакция Вюрца)	2
Вещество Х – 2,3-диметилбутан	
2. $(CH_3)_2CH-CH(CH_3)_2+Br2 \rightarrow (CH_3)_2CBr-CH(CH_3)_2+HBr;$	2
на свету	
3. $(CH_3)_2CBr-CH(CH_3)_2 + NaOH(спирт. p-p) \rightarrow (CH_3)_2C=C(CH_3)_2 + NaBr + H_2O$	2
4. $5(CH_3)_2C = C(CH_3)_2 + 4KMnO_4 + 6H_2SO_4 \rightarrow 10CH_3C(O)CH_3 + 4MnSO_4 + 2K_2SO_4 + 6H_2O_3 + 4MnSO_4 + 6H_2O$	2
5. $CH_3 - C - CH_3 + CH_3OH \xrightarrow{H^+} CH_3 OH$ $CH_3 - C - CH_3 + CH_3OH \xrightarrow{OCH_3} OH$	2
6. $CH_3-C-CH_3 + CH_2-CH_2 \xrightarrow{H^+} CH_3 C O-CH_2 + H_2O$ $OH OH OH$	
Все элементы ответа записаны неверно	0
Максимальный балл	12

- 1. Олимпиадные задания Заключительного тура Всероссийского конкурса научных работ школьников Юниор-2013 года по химии.- http://docplayer.ru/25810553-Olimpiadnye-zadaniya-zaklyuchitelnogo-tura-vserossiyskogo-konkursa-nauchnyh-rabot-shkolnikov-yunior-2013-goda-po-himii.html
- 2. Свитанько И. В., Кисин В. В., Чуранов С. С. Стандартные алгоритмы решения нестандартных химических задач. М., Химический факультет МГУ им. М. В. Ломоносова, 2012. 253с.
- 3. Школьные олимпиады по химии.- http://www.chem.msu.su/rus/olimp/