Задание 1

Решение

1) Схема электролиза водных растворов солей карбоновых кислот:

Катод:
$$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$$

Анод:
$$2RCOO^{-} - 2e^{-} \rightarrow 2RCOO \rightarrow 2R + 2CO_{2} \rightarrow R_{2} + 2CO_{2}$$

Суммарное уравнение электролиза:

$$2RCOOK + 2H_2O \rightarrow R_2 + 2CO_2 + H_2 + 2KOH$$

2) В условии сказано, что соль предельной кислоты, => формула радикала C_nH_{2n+1} , а формула полученного углеводорода A - $C_{2n}H_{4n+2}$.

Составим уравнение по массовой доле углерода в углеводороде А:

$$\frac{24n}{24n+4n+2} = 0,8372$$

Решив уравнение, получим, что n = 3, => Углеводород $A - C_6H_{14}$, а исходная соль кислоты C_3H_7COOK .

Калиевая соль может быть либо масляной, либо *изо*масляной кислот. Если соль масляной кислоты, то при электролизе получится гексан. В его составе 2 первичных атома углерода и 4 вторичных, => при монобромировании могут образоваться 3 монобромпроизводных: 3-бромгексан, 2-бромгексан и 1-бромгексан. Если же калиевая соль *изо*масляной кислоты, то в ходе электролиза образуется 2,3-диметилбутан. При его монобромировании будут образовываться 2-бром-2,3-диметилбутан и 1-бром-2,3-диметилбутан. Это отвечает условию, => калиевая соль *изо*масляной кислоты (2-метилпропановой), углеводород А – 2,3-диметилбутан.

Структурные формулы:

3) Уравнение электролиза:

$$2CH_3$$
- CH - $COOK + $2H_2O$ \xrightarrow{i} CH_3 - CH - CH - CH_3 + $2CO_2$ + H_2 + $2KOH$
 CH_3 $CH_3$$

4) Синтез дипептида:

1)
$$CH_3$$
- CH - $COOK$ + HCI \longrightarrow CH_3 - CH - $COOH$ + KCI
 CH_3

2)
$$CH_3$$
- CH - $COOH$ + CI_2
 CH_3
 CH_3
 CH_3

4)
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

5)
$$NH_2$$
-C-COOH + NH_2 -C-COOH \longrightarrow NH_2 -C-COOH + H_2 O CH₃ CH₃ CH₃

Критерии оценивания:

1) Схема электролиза 1 балл Молекулярное уравнение электролиза в общем виде 1 балл 2) Расчет молекулярной формулы исходной соли 2 балла Молекулярные формулы исходной соли и углеводорода А по 0,5 балла, всего 1 балл Доказательство строения исходной соли и углеводорода А 3 балла по 0,5 балла, всего 1 балл Структурные формулы 3) Уравнение электролиза исходной соли 1 балл по 1 баллу, всего 5 баллов 4) За каждое уравнение итого: 15 баллов

Задание 2

Решение

1)
$$CH_2-CH_2-CH_3+Mg$$
 \longrightarrow CH_3+MgBr_2 Br Br

1,3-дибромбутан

2)
$$CH_2 = CH - CH_2 - CH_3 + H_2O \xrightarrow{H^+} CH_3 - CH - CH_2 - CH_3$$

OH

Бутен-1

3) NaC
$$\equiv$$
CH + CH₃I \longrightarrow CH₃-C \equiv CH + NaI

Ацетиленид натрия

4)
$$3CH_3-C \equiv CH \xrightarrow{C, 600^0} H_3C \xrightarrow{CH_3} CH_3$$

Пропин

5)
$$\bigcirc$$
 $-CH_3 + Br_2 \xrightarrow{hv}$ \bigcirc $-CH_2Br + HBr$

толуол

6)
$$5H_3C - CH_3 + 12KMnO_4 + 18H_2SO_4 \longrightarrow$$

Реагент — n-ксилол (1,4-диметилбензол); продукт — терефталевая кислота

7)
$$CH_3COOC_5H_5 + 2NaOH$$
 — $CH_3COONa + C_6H_5ONa + H_2O$ Этилацетат фенолят натрия фенолят натрия

9)
$$[CH_3 \stackrel{\dagger}{N}H_3]Cl^- + AgNO_3 \longrightarrow [CH_3 \stackrel{\dagger}{N}H_3]NO_3^- + AgCl$$

 Хлорид метиламмония нитрат метиламмония

11) $CH_3NH_2 + HNO_2 \rightarrow CH_3OH + N_2 + H_2O$

Критерии оценивания:

1) Каждое уравнение реакции Названия

по 1 баллу, всего 10 баллов

по 0,25 балла (16 названий), всего 4 балла

2) Реакция получения метанола из метиламина

1 балл

ИТОГО:

15 баллов

Задание 3

Решение

1) Соли, которые разлагаются без остатка, — это соли аммония — нитрат, нитрит, карбонат, гидрокарбонат, сульфит, гидросульфит, сульфид, гидросульфид. Тогда элемент Z — это азот.

 $NH_4NO_3 \rightarrow N_2O + 2H_2O$

 $NH_4NO_2 \rightarrow N_2 + 2H_2O$

 $(NH_4)_2CO_3 \rightarrow CO_2 + 2NH_3 + H_2O$

 $NH_4HCO_3 \rightarrow CO_2 + NH_3 + H_2O$

Сульфиды и сульфиты аммония начинают разлагаться при комнатной температуре с выделением сероводорода или диоксида серы и аммиака; при охлаждении объем газовой смеси изменяться не будет. Карбонат и гидрокарбонат аммония также разлагаются при температуре ниже 100 0 C, хотя и с образованием воды. Но при ее конденсации значительного изменения объема газовой смеси происходить не будет. Значит это нитрат или нитрит аммония. Обе соли подходят под условие уменьшения объема при конденсации воды в 3 раза. Вещество С – распространенный в природе газ. Это азот, => исходное вещество В - нитрит аммония.

 $NH_4NO_2 \rightarrow N_2 + 2H_2O$

 $N_2 + 3Mg \rightarrow Mg_3N_2$

 $Mg_3N_2 + 6H_2O \rightarrow 3Mg(OH)_2 + 2NH_3$

Газ D с резким запахом — это аммиак. Его объем в 2 раза больше, чем объем азота, выделившегося при разложении нитрита аммония. При пропускании его через раствор азотной кислоты получился нитрат аммония (вещество E), имеющий тот же качественный состав, что и нитрит аммония.

 $NH_3 + HNO_3 \rightarrow NH_4NO_3$

2) При замене B – нитрита аммония на E – нитрат аммония в условии следует указать: «... взял соединение B – бесцветный кристаллический порошок - и *осторожно* нагрел..» и «...пропустил газ D через раствор азотной кислоты. При этом он выделил *исходное вещество* B».

Изменения произойдут только в двух реакциях:

 $NH_4NO_3 \rightarrow N_2O + 2H_2O$

 $N_2O + 4Mg \rightarrow Mg_3N_2 + MgO$

3) Цепочка подразумевает превращения азота:

 $N^{-3} \rightarrow N^{-3} \rightarrow N^{+1} \rightarrow N^0 \rightarrow N^{-3}$

 $Mg_3N_2 + 6H_2O \rightarrow 3Mg(OH)_2 + 2NH_3$

 $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$

 $2NO + 2H_2 \rightarrow N_2 + 2H_2O$ (вместо водорода может быть другой восстановитель – C, P, Cu, H_2S и т.д.)

 $N_2 + 3Mg \rightarrow Mg_3N_2$

Критерии оценивания:

1) Названия Z, B, C, D, Eпо 0,5 балла, всего 2,5 баллаДоказательство, что В – это нитрит аммония1,5 балла2) Уравнения реакцийпо 1 баллу, всего 4 балла3) Изменение условияпо 0,5 балла, всего 1 баллУравнения реакцийпо 1 баллу, всего 2 балла4) Каждое уравнениепо 1 баллу, всего 4 балла

ИТОГО: 15 баллов

Задание 4

Решение

1)
$$\omega(X) = 100 - (14,03 + 30,22 + 46,04) = 9,71\%$$
 $\nu(K) = 14,03 / 39 = 0,36$ моль $\nu(Si) = 30,22 / 28 = 1,079$ моль $\nu(O) = 46,04 / 16 = 2,88$ моль $\nu(X) = 9,71 / M$ моль $\nu(X) = 9,71 / M$ моль $\nu(X) : \nu(Si) : \nu(O) : \nu(X) = 0,36 : 1,079 : 2,88 : \nu(X) = 1 : 3 : 8 : b$ Если $\nu(X) = 0,36$ моль, $\nu(X) = 0,3$

2) «Термит» - это смесь алюминия и железной окалины; применяется для сварки металлических изделий, поскольку при поджигании смеси выделяется большое количество теплоты и развивается высокая температура.

$$8Al + 3Fe_3O_4 = 9Fe + 4Al_2O_3$$

$$\Delta Q_{\text{р-цин}} = 4Q_{\text{обр}}(Al_2O_3)$$
 - $3Q_{\text{обр}}(Fe_3O_4) = 4 \cdot 1670 - 3 \cdot 1117 = 6680 - 3351 = 3329 кДж $8 \cdot 27 \text{ r Al} - 3329 \text{ кДж}$ 90 r Al - $X \text{ кДж}$ $X = 1387 \text{ кДж}$ $Y = 1387 \text{ kДж}$ $Y = 1387 \text{ kJ}$ $Y = 1387 \text{$$

Критерии оценивания:

итого:	15 баллов
3) Каждое уравнение	по 1 баллу, всего 3 балла
Расчет теплоты, выделившейся в условиях задачи	1 балл
Расчет стандартной теплоты реакции	3 балла
Уравнение реакции в термитной смеси	2 балла
Объяснение причины применения	1 балл
Указание на его применение	1 балл
2) Указание на состав термита (определение термина)	1 балл
Расчет состава ортоклаза	2 балла
1) Название металла	1 балл