Министерство образования, науки и молодежной политики Нижегородской области Нижегородский государственный университет им. Н.И.Лобачевского

Всероссийская олимпиада школьников по химии Муниципальный (районный) этап

11 класс

Решение задач

Задача 1.

1.1. Раствор содержит NaCl, NaBr и NaI. При обработке исходного раствора бромной водой и хлором имеют место следующие реакции:

$$2NaI + Br_2 \longrightarrow 2NaBr + I_2$$

$$2NaI + Cl_2 \longrightarrow 2NaCl + I_2$$

$$2NaBr + Cl_2 \longrightarrow 2NaCl + Br_2$$

1.2. После выпаривания в сухом остатке массой 1.732 г присутствуют исходные соли. Сухой остаток 1.685 г состоит из NaBr и NaCl, а остаток массой 1.4625 г представляет собой NaCl.

Обозначив количество вещества NaCl, NaBr и NaI в 20 мл раствора, соответственно, x, y и z моль, составим систему уравнений:

$$58.5x + 103y + 150z = 1.732$$

 $58.5x + 103y + 103z = 1.685$
 $58.5x + 58.5y + 58.5z = 1.4625$

Решив систему, находим x = 0.02 моль, y = 0.004 моль и z = 0.001 моль.

Соответственно мольные концентрации равны:

 $C(Cl^{-}) = 0.02$ моль/0.02 л = 1 моль/л;

 $C(Br^{-}) = 0.004 \text{ моль}/0.02 \ л = 0.2 \text{ моль}/л;$

 $C(I^{-}) = 0.001$ моль/0.02 л = **0.05 моль**/л.

 $C(Na^+) = 0.025$ моль/0.02 л = **1.25 моль**/л.

1.3. Из раствора объемом 20 мл (0.02 л), согласно уравнениям реакций можно получить 0.0005 моль йода и 0.002 моль брома. 1 м³ = 1000 л. Из такого объема выделится 25 моль йода и 100 моль брома. Массы, соответственно, равны: $m(I_2) = 25$ моль $\cdot 254$ г/моль = 6350 г = **6.35 кг**;

За уравнения реакций (или в молекулярной, или в ионной формах) – по 2 балла	6 баллов
За расчет мольных концентраций анионов – по 4 балла	12 баллов
За расчет мольной концентрации катионов натрия	2 баллов
За расчет массы брома и йода в 1 м ³ раствора	5 баллов
Всего	25 баллов

Задача 2.

2.1. Для определения объема воздуха, загрязненного сероводородом, находим объем цилиндра:

$$V_{\text{возд.}} = \pi r^2 h = 3.14 \cdot 25 \cdot 2 = 157 \text{ км}^3 = 157 \cdot 10^9 \text{ м}^3 = 157 \cdot 10^{12} \text{ л}.$$

Концентрация сероводорода составляет 1/20 предельно допустимой (ПДК), равной 0.01 мл/л, т.е. $5\cdot 10^{-4}$ мл/л.

 $V(H_2S)$ на рассматриваемой территории: $5\cdot 10^{-4}$ мл/л $\cdot 157\cdot 10^{12}$ л = $785\cdot 10^8$ мл = $785\cdot 10^5$ л \Rightarrow n(H_2S) = $35\cdot 10^5$ моль.

Масса серной кислоты: $35 \cdot 10^5$ моль \cdot 98 г/моль = $3434 \cdot 10^5$ г = **343.4 т**.

2.2. Уравнения получения серной кислоты:

$$2H_2S + 3O_2 \rightarrow 2H_2O + 2SO_2$$

 $2SO_2 + O_2 \rightarrow 2SO_3$
 $SO_3 + H_2O \rightarrow H_2SO_4$

2.3. Уравнения реакций:

$$2 FeOOH + 3 H_2 S \rightarrow 2 FeS + S + 4 H_2 O;$$
 $Na_2 CO_3 + H_2 S \rightarrow NaHCO_3 + NaHS$ или $2 Na_2 CO_3 + H_2 S \rightarrow 2 NaHCO_3 + Na_2 S;$ $2 R_3 N + H_2 S \rightarrow (R_3 NH)_2 S \downarrow$ или $R_3 N + H_2 S \rightarrow (R_3 NH) SH.$

Реакцию с любым конкретным третичным амином можно засчитывать как верную.

За расчет массы серной кислоты	10 баллов
За уравнения реакций получения серной кислоты из сероводорода — 3 уравнения по 2 балла	6 баллов
За уравнения реакций поглощения сероводорода — 3 уравнения по 3 балла	9 баллов
Всего	25 баллов

Задача 3.

3.1. Химическая формула $X - Ca(OH)_2$.

Систематическое название – гидроксид кальция.

Тривиальные названия – гашеная известь, портландит.

Насыщенный водный раствор – известковая вода.

Водная взвесь – известковое молоко.

3.2. Химическая формула $Y - CO_2$.

Систематические названия – диоксид углерода, оксид углерода(IV).

Тривиальные названия — углекислый газ, углекислота. Название «сухой лед» можно засчитать как правильное, хотя оно относится к твердому диоксиду углерода.

3.3. Уравнения реакций:

$$(C_6H_{10}O_5)_n + (n-1) H_2O \rightarrow nC_6H_{12}O_6$$

 $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2\uparrow$
 $Ca(OH)_2 + CO_2 \rightarrow CaCO_3\downarrow + H_2O$

3.4. Рассчитаем массу углекислого газа по уравнению Клайперона-Менделеева.

$$V=2$$
 дм $^3=2$ л = 0.002 м 3 $PV=nRT\Longrightarrow n=PV/RT$ $n=(7.3\cdot 10^4\cdot 2\cdot 10^{-3})\,/\,(8.314\cdot 298)=0.059$ моль

$$n(CO_2)=0.059$$
 моль.
 $n[Ca(OH)_2]=1.6$ г/л · 4 л / 74г/моль = 0.0865 моль.

Углекислый газ находится в недостатке. Гидрокарбонат кальция не образуется. Осадок представляет собой карбонат кальция. Масса осадка:

$$n(CO_2) = n(CaCO_3)$$

 $m(CaCO_3) = 100 \ г/моль \cdot 0.059 \ моль = 5.9 \ г.$

3.5. Гидроксид кальция является основанием и реагирует с кислотами, кислотными оксидами и солями. Уравнения проходящих реакций:

$$Ca(OH)_2 + CuCl_2 \rightarrow Cu(OH)_2 \downarrow + CaCl_2$$
 $Ca(OH)_2 + 2HCl \rightarrow 2H_2O + CaCl_2$
 $Ca(OH)_2 + SO_2 \rightarrow CaSO_3 \downarrow + H_2O$ или $Ca(OH)_2 + 2SO_2 \rightarrow Ca(HSO_3)_2$

Гидроксид кальция не реагирует с хлоридом натрия в растворе (малорастворимых веществ не образуется) и оксидом магния (это основный оксид).

Рекомендация по оценке решения

За формулы \mathbf{X} и \mathbf{Y} – по 1 баллу	2 балла
За систематические названия ${\bf X}$ и ${\bf Y}$ – по 1 баллу	2 балла
За тривиальные названия Х и У – по 1 баллу	2 балла
За технические названия растворов Х – по 1 баллу	2 балла
За каждое из 6 уравнений реакций – по 2 балла	12 баллов
За расчет массы осадка	5 баллов
Всего	25 баллов

Задача 4.

4.1. Вещество \mathbf{X} — салициловая кислота, вещество \mathbf{Y} — ацетилсалициловая кислота.

В 100 г вещества **X** 60.8 г углерода, 4.3 г водорода и 34.8 г кислорода. n(C) = 60.8/12 = 5.0667 моль, n(H) = 4.3 моль, n(O) = 34.8/16 = 2.175 моль. $n(C) : n(H) : n(O) = 5.0667 : 4.3 : 2.175 \cong 7 : 6 : 3$. Вещество **X** имеет молекулярную формулу $C_7H_6O_3$.

Аналогично рассчитывается соотношение атомов в производном ${\bf Y}$. Это вещество имеет формулу ${\rm C_9H_8O_4}.$

Реакции с раствором карбоната натрия и с водным раствором FeCl₃ свидетельствуют о присутствии в молекуле карбонильной группы и фенольного фрагмента. Наличие в молекуле внутримолекулярной водородной связи говорит об *орто*-расположении функциональных групп.

4.2. Реакция получения ацетилсалициловой кислоты:

$$HO-C_6H_4-COOH + CH_3COOCOCH_3 \rightarrow CH_3COO-C_6H_4-COOH + CH_3COOH$$

4.3. Схема получения салициловой кислоты из толуола:

Реакции с карбонатом натрия и хлорным железом

Рекомендация по оценке решения

За установление молекулярных формул X и Y – по 2 балла	4 балла
За структурные формулы Х и У – по 2 балла	4 балла
За обоснование орто-положения	1 балл
За реакции с Na ₂ CO ₃ и FeCl ₃ - по 2 балла	4 балла
За синтез X из толуола (засчитывать любой химически верный синтез)	12 баллов
Всего	25 баллов