Химия. 11 класс. Задания + решения

Задача 11-1

Смесь оксида железа (III) и малахита (основной карбонат меди) растворили в соляной кислоте. При пропускании через полученный раствор сероводорода выпал осадок, а в растворе есть избыток хлороводорода. Напишите уравнения реакций. Укажите в окислительно-восстановительной реакции окислитель и восстановитель.

Решение 11-1:

1	$(CuOH)_2CO_3 + 4 HCl \rightarrow 2CuCl_2 + CO_2 \uparrow + 3 H_2O$	1 балл
2	$Fe_2O_3 + 6 HCl \rightarrow 2 FeCl_3 + 3 H_2O$	1 балл
3	$2\text{FeCl}_3 + \text{H}_2\text{S} \rightarrow 2 \text{ FeCl}_2 + 2 \text{ HCl} + \text{S}\downarrow$	1 балл
4	$CuCl_2 + H_2S \rightarrow CuS\downarrow + 2 HCl$	1 балл
5	Окислительно-восстановительная реакция №3	1 балл
	$Fe(+3)$ –окислитель, S^{-2} - восстановитель	
	Итого	5 баллов
	При неверных коэффициентах по 0,5 балла за уравнение	

Задача11- 2. (10 баллов)

В лаборатории имеется дихромата аммония и кислород, а необходимо получить нитрат хрома (+3). Предложите способ получения нитрата хрома(+3) без использования других имеющихся в лаборатории веществ, содержащих в своем составе хром или азот. Можно пользоваться только веществами, полученными в осуществляемых реакциях.

Решение:

Наиболее простой способ: $(NH_4)_2Cr_2O_7 = Cr_2O_3 + N_2 + 4 H_2O.$ $N_2 + O_2 = 2 NO.$ $2 NO + O_2 = 2 NO_2.$ $4 NO_2 + 2 H_2O + O_2 = 4 HNO_3.$ $Cr_2O_3 + 6HNO_3 = 2 Cr(NO_3)_3 + 3 H_2O.$

Система оценивания:

До 10 баллов за способ не более чем из 6 стадий. Менее рациональные способы оценивать из 8 баллов. Если часть уравнений составлены неверно, но способ синтеза верный, то оценку выставлять пропорционально числу правильных уравнений. За неверные коэффициенты выставляем 1 балл за уравнение.

Задача 11-3. (10 баллов)

Известно, что многие реакции являются обратимыми и в определенный момент наступает равновесие.

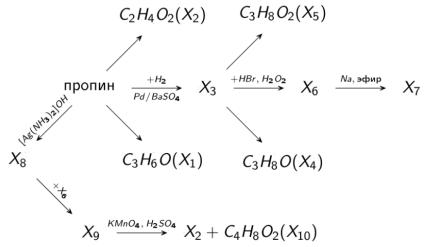
В гомогенной системе $CO + Cl_2 \longrightarrow COCl_2$ равновесные концентрации реагирующих веществ: [CO] = 0,2 моль/л; $[Cl_2] = 0,3$ моль/л; $[COCl_2] = 1,2$ моль/л.

- 1) Вычислите константу равновесия системы и исходные концентрации хлора и оксида углерода.
- 2) Рассчитайте давление в сосуде объемом 2 л, где содержится указанная равновесная смесь газов, при температуре 40 °C.
- 3) Назовите тривиальное название вещества COCl₂? Чем известно это вещество?
- 4) Какими станут равновесные концентрации веществ, если уменьшить объем в два раза

Решение 11-3:

	$[COCl_2]$ 1.2	
1	$K_{ ext{pabh}} = rac{\left[oldsymbol{COCl_2} ight]}{\left[oldsymbol{CO} ight] \cdot \left[oldsymbol{Cl_2} ight]} = rac{ extbf{1,2}}{ extbf{0,2\cdot0,3}} = extbf{20}$	1
	Исходные концентрации:	
	C(CO)=0,2+1,2=1,4 моль/л	1
	$C(Cl_2)=0,3+1,2=1,5$ моль/л	
	сумма моль газов в равновесной системе:	
2	$n(CO, Cl_2, COCl_2) = 0.2+0.3+1.2=1.7$ моль	1
	По уравнению Менделеева-Клапейрона PV=nRT рассчитываем давление:	
	P=nRT:V=1,7·8,314·(273+40):2=2212 кПа или в давление атмосферах равно	2
	2212:101,3=21,8 атм.	
	где $R = 8,314$ Дж/ $K \cdot$ мол,	
	Т-температура в кельвинах (273+40), V-литры,	
	Р- давление в кПа.	
	тривиальное название вещества COCl ₂ – фосген,	
3	отравляющее вещество	1
	При уменьшении объема в два раза концентрации увеличиваются в два	
4	раза, что влияет на равновесие.	4
	$[CO] = 0,4$ -х моль/л; $[Cl_2] = 0,6$ -х моль/л; $[COCl_2] = 2,4$ +х моль/л.	
	$\mathbf{K}_{\text{равн}} = \frac{[\text{COCl}_2]}{[\text{CO}] \cdot [\text{Cl}_2]} = \frac{2, 4 + \mathbf{x}}{(0, 4 - \mathbf{x}) \cdot (0, 6 - \mathbf{x})} = 20$	
	$\mathbf{K}_{\text{равн}} = \frac{\mathbf{CO} \cdot \mathbf{Cl_2}}{\mathbf{CO} \cdot \mathbf{Cl_2}} = \frac{\mathbf{O} \cdot \mathbf{O} \cdot \mathbf{O} \cdot \mathbf{O} \cdot \mathbf{O} \cdot \mathbf{O}}{\mathbf{O} \cdot \mathbf{O} \cdot \mathbf{O} \cdot \mathbf{O} \cdot \mathbf{O}} = 2\mathbf{O}$	
	Решая уравнение, получаем:	
	x_1 =0,92 (что не может быть) и x_2 =0,13.	
	Следовательно,	
	$[CO] = 0,4-0,13=0,27$ моль/л; $[Cl_2] = 0,6-0,13=0,47$ моль/л; $[COCl_2] =$	
	2,4+0,13=2,53 моль/л.	
	Итого	10
	111010	10

Задача 11-4. (10 баллов)


Хлор получают в лабораторных условиях взаимодействием оксида марганца (IV) с концентрированным раствором соляной кислоты. Сколько граммов оксида Мп (IV) и миллилитров 35,2 %-ного раствора соляной кислоты (пл. 1,18 г/мл) нужно взять для получения хлора в количестве, необходимом для полного сгорания 24 г тонкой раскаленной проволоки из неизвестного металла? Если через раствор соли двухвалентного металла, образовавшейся в результате сгорания, пропустить ток сероводорода, то выпадает 36 г черного осадка. Из какого металла сделана проволока? Напишите уравнения, протекающих реакций.

Решение 11-4

1	на основании информации, что образуется соль двухвалентного металла	3
	составим уравнения реакций	
	$Me + Cl_2 = MeCl_2$	
	$MeCl_2 + H_2S = MeS + 2 HCl$	
	$MnO_2 + 4HCl = MnCl_2 + Cl_2 + H_2O$	
2	из уравнений реакций следует что n(Me)=n(MeCl ₂)=n(MeS),	2
	обозначим х-молярная масса металла	
	24:x=36:(x+32)	
	х=64, металл МЕДЬ	
3	n(Cl ₂)= n(Cu)=24:64=0,375 моль	2
	n(MnO ₂)=n(Cl ₂)=0,375 моль	
	$m(MnO_2)=0,375\cdot87=32,625 \Gamma$	
4	n(HCl)=4·0,375=1,5 моль	3
	m(HCl)=1,5·36,5=54,75 г	
	m(раствораHCl)=54,75:0,352=155,5 г	
	V(раствораНСI)= 155,5:1,18=132 мл.	
5	Итого	10 баллов

Задача 11-5. (15 баллов)

Напишите уравнения реакций и укажите условия получения из пропина соединений X_1 - X_{10} с использованием неорганических веществ и веществ, полученных на предыдущих стадиях. Назовите вещества X_1 - X_{10} .

Решение 11-5:

1) $C_3H_6O(X1)$

 $CH_3C\equiv CH + H_2O \rightarrow CH_3C(O)CH_3$ (в присутствии Hg^{2+} , H^+), Название: пропанон, ацетон.

2) $C_2H_4O_2(X2)$

 $5CH_3C\equiv CH + 8KMnO_4 + 12H_2SO_4 \rightarrow 5CH_3COOH + 5CO_2 + 4K_2SO_4 + +8MnSO_4 + 12H_2O$ Название: этановая кислота, уксусная кислота.

- 3) $X3 C_3H_6$, пропен, пропилен $CH_3C≡CH + H_2 → CH_3CH≡CH_2$
- 4) C₃H₈O (X4)

 $CH_3CH=CH_2+H_2O \rightarrow CH_3CH(OH)CH_3$. Название: пропанол-2, изопропанол.

5) $C_3H_8O_2(X5)$

 $3CH_3CH=CH_2+2KMnO_4+4H_2O\rightarrow 3CH_3CH(OH)CH_2(OH)+2MnO_2+2KOH$ Название: пропандиол-1,2.

6) $X6 - C_3H_7Br$

 $CH_3CH=CH_2 + HBr \rightarrow CH_3CH_2CH_2Br$ (в присутствии H_2O_2)

Название: 1-бромпропан.

7) $X7 - C_6H_{14}$

 $2CH_3CH_2CH_2Br + 2Na \rightarrow CH_3CH_2CH_2CH_2CH_3 + 2NaBr(эфир, нагрев)$

Название: гексан, н-гексан.

8) X8 - CH₃C≡CAg↓

 CH_3C ≡ $CH + [Ag(NH_3)_2]OH \rightarrow CH_3C$ ≡CAg $\downarrow + 2NH_3 + H_2O$, Название: пропинид серебра

9) $X9 - C_6H_{10}$

 $CH_3C\equiv CAg\downarrow + CH_3CH_2CH_2Br \rightarrow CH_3C\equiv CCH_2CH_2CH_3 + AgBr$, Название: гексин-2

 $10) C_4H_8O_2 (X10)$

 $5CH_3C \equiv CCH_2CH_2CH_3 + 6KMnO_4 + 9H_2SO_4 \rightarrow 5CH_3COOH + 5CH_3CH_2CH_2COOH + 3K_2SO_4 + 6MnSO_4 + 4H_2O$

Название: бутановая кислота, масляная кислота.

Система	Считать правильными и другие химически				
оценивания:	верные способы				
Уравнения синт	10 баллов				
При неправильных коэффициентах по 0,5 баллов					
Названия 10 вец	5 баллов				
Итого	15 баллов				