#### 10 класс

#### Задание 1.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|
| Б | A | Б | В | В | В | A | В | Γ | Γ  | В  | В  | Б  | Γ  | В  |

По 1 баллу за правильный ответ. Если указано более одного варианта, среди которых есть верный, 0 баллов.

Всего максимум 15 баллов.

### Задание 2.

1. Массу раствора можно найти сложением масс составляющих его веществ:  $m(p-pa) = 1000 + 250 + 5 + 5 + 25 = 1285 \, \Gamma$ 

Массовые доли компонентов составят:

$$w \text{ (NiSO_4)} = 250/1285 = 0.1946 \Rightarrow 19.46\%$$

$$w (H_3BO_3) = 25/1285 = 0.0195 \Rightarrow 1.95\%$$

$$w$$
 (KCl) =  $w$  (KF) =  $5/1285 = 0.0039 => 0.39\%$ 

# (по 0,5 балла за каждый компонент, всего 2 балла)

2. Обозначим количество добавляемого кристаллогидрата сульфата никеля за x. Тогда вместе с этой солью в раствор попадёт  $x\cdot18\cdot7/(18\cdot7+154,75)=0,4488\cdot x$  воды и  $x\cdot154,75/(18\cdot7+154,75)=0,5512\cdot x$  безводного сульфата никеля. Массу полученного раствора обозначим за y. Тогда:

$$w (H_2O) = (1000 + 0.4488 \cdot x)/y = 0.7782$$

$$w \text{ (NiSO_4)} = 0.5512 \cdot x/y = 0.1946$$

Эта система уравнений имеет решение x = 570 и y = 1614.

Таким образом, масса необходимого количества кристаллогидрата сульфата никеля составляет m (NiSO<sub>4</sub>) = 570 г. Массы остальных компонентов можно найти, используя массу раствора и массовые доли этих компонентов:

$$m (H_3BO_3) = 0.0195 \cdot 1614 = 31.5 \Gamma$$

m (KF) = m (KCl) =  $0.0039 \cdot 1614 = 6.3$  г (по 0.75 балла за массу каждого компонента, всего 3 балла)

3. Основной процесс:  $Ni^{2+} + 2e^{-} = Ni$  (1 балл).

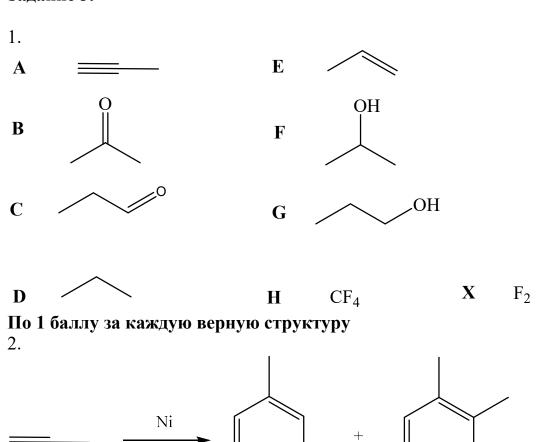
Второй возможный катодный процесс при проведении электролиза металлов средней активности – выделение водорода:

$$2H^+ + 2e^- = H_2$$

или

$$2H_2O + 2e^- = H_2 + 2OH^-$$
 (1 балл за любой вариант).

4. Закон электролиза Фарадея, связывающий массу выделившегося при электролизе вещества с силой тока, может быть записан следующим образом:  $m = I \cdot t \cdot M / (n \cdot F)$ .


Вычислим теоретически выделяющуюся массу металла: m (Ni, meop) =  $8\cdot40\cdot60\cdot58,7/(2\cdot96485)$  = 5,84 г. С учётом выхода по току масса металла составит m (Ni,  $npa\kappa$ ) =  $0,97\cdot6,51$  = 5,67 г. Объём никеля V = 5,67/8,9 = 0,637 см<sup>3</sup>.

Толщина покрытия может быть найдена как отношение объёма металла к занимаемой им площади: 0.637/320 = 0.002 см = **20 мкм.** (**3 балла**)

5. На покрытие одной детали требуется 5,67 г металла. Исходный раствор содержит 250 г сульфата никеля, что соответствует 250.58,7/154,75 = 94,8 г никеля. Количество деталей N = 94,8/5,67 = 16,7, т.е. можно покрыть 16 деталей (1 балл за ответ 16 или 16,7, 0,5 балла за неверно округленный ответ 17).

# Всего максимум 11 баллов.

### Задание 3.



# По 0,5 балла за каждую верную структуру

3. Кучеров, Хараш (Караш), Майо, Кижнер, Вольф, Клемменсен, Марковников, Линдлар (любые два из списка, по 0,5 балла)

# Всего максимум 11 баллов.

#### Задание 4.

- 1.  $^{238}_{92}$ U =  $^{234}_{90}$ Th +  $^{4}_{2}$ He (1 балл)
- 2.  $\frac{218}{84}$ Po =  $\frac{214}{82}$ Pb +  $\frac{4}{2}$ He (1 балл)
- 3. В результате распада масса уменьшилась на 0,00020 г в результате выделения альфа-частиц. Количество выделившихся через 77 секунд альфа-частиц равно 0,00020/4 = 0,05 ммоль, масса распавшегося вещества составит  $0,05\cdot218 = 10,9$  мг, а масса нераспавшегося: 43,6-10,9 = 32,7 мг. (1 балл) Период полураспада можно выразить следующим образом:

$$T_{\frac{1}{2}} = -\frac{t \cdot \ln(2)}{\ln(\frac{m}{m_0})} = -\frac{77 \cdot 0,693}{\ln(\frac{10,9}{32,7})} =$$
**185**, **5** с (**2** балла)

4. 
$$m = m_0 \cdot 2^{-t/T_{\frac{1}{2}}} = 43,6 \cdot 2^{-370/185,5} = 10,9$$
 мг

Следовательно, распалось 43.6 - 10.9 = 32.7 мг, что соответствует выделению  $32.7/218\cdot 4 = 0.6$  мг альфа-частиц. Весы покажут значение 0.04360 - 0.0006 = 0.04300 г (2 балла).

- 5.  ${}^{14}_{6}C = {}^{14}_{7}N + {}^{0}_{-1}\beta (1 \text{ балл})$
- 5. Запишем суммарное уравнение ядерных реакций:

$$^{237}_{93}$$
Np =  $^{209}_{83}$ Bi +  $x_2^4$ He +  $y_{-1}^0$  $\beta$ 

Закон сохранения масс будет выглядеть следующим образом: 237 = 209 + 4x, откуда получаем x = 7. Закон сохранения заряда даст: 93 = 83 + 2x - y = 97 - y, следовательно, y равен 4. Итоговое уравнение:

$$^{237}_{93}$$
Np =  $^{209}_{83}$ Bi +  $7^{4}_{2}$ He +  $4^{0}_{-1}$  $\beta$ 

Таким образом, превращения нептуния-237 в висмут-209 включает **7 альфа**-и **4-бета-распада (по 1 баллу за каждое число)** 

Всего максимум 10 баллов.