Муниципальный этап всероссийской олимпиады школьников по химии Ханты-Мансийский автономный округ – Югра

2020–2021 учебный год 10 класс ЗАДАНИЯ

Инструкция по выполнению заданий

Продолжительность 4 часа. При выполнении заданий можно использовать периодическую систему Д.И. Менделеева, таблицу растворимости кислот, оснований и солей в воде, ряд напряжений металлов, калькулятор.

Желаем удачи

Задача 1. Химические реакции в органической химии (25 баллов)

При нагревании безводной натриевой соли одноосновной карбоновой кислоты X с безводным гидроксидом натрия выделяется бесцветный газ Y, не имеющий запаха:

$$X$$
 (безвод.) + $NaOH$ $\xrightarrow{\text{нагревание}} Y$ + соль

При пропускании выделившегося газа Y через мыльную воду образуются мыльные пузыри, поднимающиеся в атмосфере воздуха вверх, при контакте с зажженной лучиной, газ со взрывом (с хлопком) сгорает с бесцветным пламенем. В результате реакции образуется газ Z. Газ Z при взаимодействии с известковой водой образует осадок белого цвета. Газ Y не обесцвечивает бромную воду.

При продолжительном пропускании электрического разряда через закрытую колбу, заполненную газом Y, регистрируется давление в 1 атм. и в колбе появляются черные хлопья, а после ее остывания до первоначальной температуры в колбе регистрируется давление в 2 атм.

Смесь газа Y с газообразным хлором окрашивается в цвет хлора (зеленоватый цвет) и в стеклянном сосуде при отсутствии прямых солнечных лучей в течение нескольких часов обесцвечивается. При этом влажная лакмусовая бумага, опущенная в колбу, сначала не меняет свой цвет, но в течение нескольких часов постепенно приобретает красную окраску, а на внутренних стенках сосуда появляются капельки бесцветной жидкости, которая не смешивается с водой, но легко растворяется в гексане.

В тоже время, смесь газа с газообразным хлором, находящаяся в стеклянном сосуде под воздействием прямых солнечных лучей, взрывается с

образованием хлопьев сажи. При этом образовавшиеся газообразные продукты взрыва окрашивают влажную лакмусовую бумагу в красный цвет.

<u>No</u>	Элементы решения	Баллы
1.	При нагревании безводной натриевой соли	3 балла
	одноосновной карбоновой кислоты с безводным	
	гидроксидом натрия выделяется бесцветный газ, не	
	имеющий запаха. Это СН ₄ метан	
2.	$2CH_3COONa$ (безвод.) + $2NaOH$ + нагревание = CH_4 + Na_2CO_3	2 балла
3.	При контакте мыльного пузыря в атмосфере воздуха с	3 балла
	зажженной лучиной газ со взрывом (с хлопком) сгорает	
	с бесцветным пламенем.	
	$CH_4 + 2O_2 + искра = CO_2 + 2H_2O$	
4.	Качественной реакцией на углекислый газ является	2 балла
	реакция его взаимодействия с известковой водой	
	(молоком), т.е. с гидроксидом кальция, в которой	
	образуется осадок белого цвета – карбонат кальция:	
	$CO_2 + Ca(OH)_2 = CaCO_3 \downarrow + H_2O$	
5.	При продолжительном пропускании электрического	5 баллов
	разряда через закрытую колбу, заполненную газом,	
	регистрируется давление в 1 атм. и в колбе появляются	
	черные хлопья, а после ее остывания до первоначальной	
	температуры в колбе регистрируется давление в 2 атм.	
	$CH_4 \xrightarrow{\mathfrak{sl.paspad}} C + 2H_2$	
6.	Смесь газа с газообразным хлором окрашивается в цвет	5 баллов
	хлора (зеленоватый цвет) и в стеклянном сосуде при	
	отсутствии прямых солнечных лучей в течение	
	нескольких часов обесцвечивается. При этом влажная	
	лакмусовая бумага в газообразной смеси сначала не	
	меняет свой цвет, но в течение нескольких часов	
	постепенно приобретает красную окраску, а на	
	внутренних стенках сосуда появляются капельки	

СН2СІ2 + СІ2 = СНСІ3 + НСІ СНСІ3 + СІ2 = ССІ4 + НСІ 7. В тоже время, смесь газа с газообразным хлором, находящаяся в стеклянном сосуде под воздействием прямых солнечных лучей, взрывается с образованием хлопьев сажи. При этом образовавшиеся газообразные продукты взрыва окрашивают влажную лакмусовую бумагу в красный цвет. СН4 + 2СІ2 + = С + 4НСІ		бесцветной жидкости, которая не смешивается с водой, но легко растворяется в гексане. CH ₄ + Cl ₂ = CH ₃ Cl + HCl CH ₃ Cl + Cl ₂ = CHCl ₂ + HCl				
находящаяся в стеклянном сосуде под воздействием прямых солнечных лучей, взрывается с образованием хлопьев сажи. При этом образовавшиеся газообразные продукты взрыва окрашивают влажную лакмусовую бумагу в красный цвет.	7		5 604400			
	7.	находящаяся в стеклянном сосуде под воздействием прямых солнечных лучей, взрывается с образованием хлопьев сажи. При этом образовавшиеся газообразные продукты взрыва окрашивают влажную лакмусовую бумагу в красный цвет.	э оаллов			

Задание 2. Расчетная задача, газы, смеси (10 баллов)

При анализе состава газовой смеси был получен следующий состав (в %об.): водород - 93; азот - 5; метан - 1; аргон - 1. Для осуществления производственного процесса в газовой атмосфере данную смесь необходимо смешать с азотом так, чтобы объемное соотношение водорода и азота в приготовленной смеси стало равным 2/1. Сколько м³ азота потребуется для смешения со 100 м³ исходной смеси? Каким станет состав смеси после дополнения её азотом? Давление и температура газов принять постоянными.

No	Элементы решения	Баллы
1)	Судя по составу исходной смеси в ней, содержится водорода и	2
	азота соответственно	балла
	$V_{H_2} = 100 \cdot 0.93 = 93 \text{ m}^3 V_{N_2} = 100 \cdot 0.05 = 5 \text{ m}^3$	
2)	Для выполнения условия соотношения объемом водорода и	2
	азота, содержание азота $V_{N_2}^{-} = 93/2 = 46,5 \text{м}^3$	балла
	В смеси уже есть 5 м^3 , следовательно, $46,5-5=41,5 \text{ м}^3$	
3)	Общий объем смеси будет 100+41,5 = 141,5м ³	2
		балла
4)	В этом объеме смеси содержится: водород - 93; азот – 46,5;	4
	метан - 1; аргон - 1.	балла
	B (в %об.): $V_{H_2} = \frac{100.93}{141.5} = 65.7 \text{ m}^3$	

$$V_{N_2} = \frac{100 \cdot 46,5}{141,5} = 32,9 \text{ m}^3$$

$$V_{CH_4} = \frac{100 \cdot 1}{141,5} = 0,7 \text{ m}^3$$

$$V_{Ar} = \frac{100 \cdot 1}{141,5} = 0,7 \text{ m}^3$$

Задание 3. Анализ органических соединений. Изомерия (15 баллов)

Выведите в общем виде формулу углеводорода, молекула которого содержит п атомов углерода, d двойных связей, t тройных связей и с циклов. Покажите, что молекула любого углеводорода содержит четное число атомов водорода. Выведите общие формулы: а) алкенов, б) алкинов, с) производных бензола, содержащих ациклические насыщенные боковые цепи.

Система оценивания

No	Элементы решения	Баллы
1	Теоретически такой углеводород можно получить из	5 баллов
	алкана C _n H _{2n+2} , молекула которого содержит п атомов	
	углерода, путем отщепления 2d+4t+2c атомов водорода	
	(для образования двойной связи надо отщепить 2 атома	
	водорода, для образования тройной связи – 4 атома	
	водорода, для замыкания цикла – 2 атома водорода).	
	Следовательно, формулу углеводорода, молекула	
	которого содержит n атомов углерода, d двойных	
	связей, t тройных связей и с циклов можно записать так:	
	$C_nH_{2n+2-2d-4t-2c}$	
2	Из общей формулы $C_nH_{2n+2-2d-4t-2c}$ вытекает, что молекула	5 баллов
	любого углеводорода содержит четное число атомов	
	водорода	
3	Применим полученную формула для вывода общих	5 баллов
	формул:	
	а) алкенов $d=1$, $t=0$ и $c=0$; C_nH_{2n}	
	б) алкинов $d = 0$, $t = 1$ и $c = 0$; $C_n H_{2n-2}$	
	с) производных бензола, содержащих ациклические	
	насыщенные боковые цепи $d = 3$, $t = 0$ и $c = 1$; C_nH_{2n-6} ($n ≥ 6$)	

Задание 4. Реакции неорганических веществ (10 баллов)

В своих «Летописях» Тит Ливий упоминает матерчатые шнуры, один конец которых был покрыт негашеной известью и серой. При смачивании водой эти шнуры воспламенялись. Что такое негашеная известь, приведите её формулу? Напишите реакции, происходящие в момент смачивания водой шнуров? Как

вы объясните принцип действия «зажигательных шнуров», напишите реакцию?

Система оценивания

No	Элементы решения	Баллы
1.	Негашеной известью белое кристаллическое	2 балла
	вещество, формула СаО.	
2.	При смачивании шнуров водой происходит	2 балла
	сильноэкзотермическая реакция:	
	$CaO+H_2O=Ca(OH)_2$	
3.	Если количество воды не превышает количества,	3 балла
	необходимого для протекания этой реакции, то	
	выделяющееся тепло расходуется на нагревание	
	серы, которая плавится и самовозгорается на	
	воздухе.	
4.	$S+O_2=SO_2$	2 балла
5.	Загоревшаяся сера поджигает органические	1 балл
	ткани шнура.	

Задание 5. Качественные задачи (10 баллов)

Как используя только фенолфталеин определить содержимое пробирок с водой, едким кали, азотной кислотой? Дайте тривиальное название азотной кислоты?

No	Элементы решения	Баллы
1	Едкий кали – это гидроксид калия КОН	1 балл
2	Фенолфталеин окрашивается в малиновый цвет в	3 балла
	растворе щелочи – после добавления к аликвотам,	
	отобранным из каждой пробирки, определяем КОН	
3	К пробе содержащей КОН (окрашенной в малиновый	3 балла
	цвет) добавляем аликвоту НОО3. Происходит	
	обесцвечивание раствора в результате протекания	
	реакции нейтрализации	
	$KOH + HNO_3 = KNO_3 + H_2O$	
4	К пробе содержащей КОН (окрашенной в малиновый	2 балла
	цвет) добавляем аликвоту Н2О. Окраска раствора	
	остается без изменений.	
5	HNO ₃ – селитряной спирт	1 балл

Задание 6. Задачи на материальный баланс (10 баллов)

Найдите массовую долю серной кислоты в растворе, в котором содержится одинаковое число атомов водорода и кислорода.

Система оценивания

No	Элементы решения	Баллы
1	n(H)=n(O)	5 баллов
	Пусть на 1 моль H ₂ SO ₄ приходится 1 моль H ₂ O, тогда	
	v(H) = 2 + 2x, v(0) = 4 + x	
	2 + 2x = 4 + x, x = 2	
	т.е. 1 моль H_2SO_4 приходится 2 моль H_2O	
2	$m(H_2SO_4)$	5 баллов
	$\omega(H_2SO_4) = \frac{m(H_2SO_4)}{m(H_2SO_4) + m(H_2O)}$	
	98	
	$\omega(H_2SO_4) = \frac{50}{98 + 2 \cdot 18} 0,7313$ или 73,13%	

Задание 7. Смеси (20 баллов)

Для нейтрализации смеси муравьиной и уксусной кислот массой 8,3 г потребовался раствор NaOH с массовой долей 15% массой 40 г. Определить массовую долю уксусной кислоты в смеси.

Какова структурная формула муравьиной и уксусной кислот? Назовите и напишите функциональную группу кислот. Где в природе встречаются эти кислоты? Объясните ее название.

№	Элементы решения	Баллы
1	$m_{\text{NaOH}} = 0.15 \cdot 40 = 6 \; (\Gamma)$	1 балл
2	$xHCOOH + yCH_3COOH + (x+y)NaOH \rightarrow xHCOONa + yCH_3COONa$	2 балла
	46 г/моль 60 г/моль 40 г/моль	
3	Составим систему уравнений	
	$46x + 60y = 8,3 (\Gamma)$	5
	$40 (x+y) = 6 (\Gamma)$	баллов
	Отсюда $x = 0.05$, $y = 0.10$	
4	$m_1(HCOOH) = 0.05 \cdot 46 = 2.3 (\Gamma)$	3 балла
	$\omega_1 = \frac{2,3}{8,3} = 0,28$ или 28%	
5	$m_2(CH_3COOH) = 0.10 \cdot 60 = 6 (\Gamma)$	3 балла
	$\omega_2 = \frac{6}{8,3} = 0,72$ или 72%	
6	$HCOOH = 28\%$; $CH_3COOH = 72\%$	2 балла
7	HCOOH; CH₃COOH	1 балл
	–COOH карбоксильная	1 балл

Муравьиная кислота встречается в пчелином яде, в крапиве и хвое. Присутствует в некоторых плодах и ягодах. Муравьиной эта кислота названа Джоном Рэйем, который получил ее в 1670 году из муравьев.

1 балл

1 балл

Уксусная кислота известна была еще древним грекам. Отсюда и ее название: "оксос" - кислое, кислый вкус. Уксусная кислота - это простейший вид органических кислот, которые являются неотъемлемой частью растительных и животных жиров. В небольших концентрациях она присутствует в продуктах питания и напитках и участвует в метаболических процессах при созревании фруктов. Уксусная кислота встречается в клеточном соке растений, в выделениях животных, образуется при окислении органических веществ.

Задание	1	2	3	4	5	6	7	Итого
Максимальное кол-во баллов	25	10	15	10	10	10	20	100