РЕШЕНИЯ ЗАДАНИЙ ОТБОРОЧНОГО (РАЙОННОГО) ЭТАПА

Теоретический тур

10 класс

№ 1

I вариант

При термическом разложении 33.12 г соли **A** при 300° С выделилась смесь газов **Б**₁ и **Б**₂ и остался твердый остаток красно-оранжевого вещества **B**, содержащий 9.33 % кислорода по массе. Вещество **B** полностью растворили в концентрированной соляной кислоте, при этом выделился желто-зеленый газ Γ и образовалась соль \mathcal{L} . Известно, что газ **Б**₁ имеет бурую окраску и занимает объем 4.89 л при 25 °C и 1 атм.

- 1) Установите состав соли А и веществ Б1, Б2, В, Г, Д. Ответ подтвердите расчетами.
- 2) Напишите уравнения всех упомянутых реакций.

Решение.

Бурый газ \mathbf{F}_1 подходит под описание диоксида азота, из чего можно сделать предположение, что исходная соль \mathbf{A} – нитрат металла. Вычислим количество бурого газа \mathbf{F}_1 :

$$n(\mathbf{F_1}) = \frac{4,89*101,3}{298*8.31} = 0,2$$
 моль

Количество вещества диоксида азота вдвое больше количества соли. Формула соли будет выглядеть как $X(NO_3)_n$. Варьируя n, получаем возможные значения для молярной массы металла.

- n=1, формула соли XNO₃, M(A) = $\frac{33,12}{0,2}$ = 165,6 $\Gamma/_{\text{МОЛЬ}}$, отсюда M(X) = 103,6 г/моль, и данное значение не подходит ни одному из металлов;
- n=2, формула соли $X(NO_3)_2$, $M(A) = \frac{33,12}{0,1} = 331,2$ $\Gamma/_{MOЛЬ}$, отсюда M(X) = 207,2 $\Gamma/_{MOЛЬ}$, и данное значение подходит свинцу.

Проверим наше предположение, посчитав формулу соединения ${f B}$, представляющего собой оксид свинца Pb_nO_m :

$$n:m = \frac{90,67}{207,2}: \frac{9,33}{16} = 0,437:0,583 = 0,75:1$$
 или 3:4,

что соответствует свинцовому сурику РЬ₃О₄

Вещества: **A** - Pb(NO₃)₂, $\mathbf{F_1} - \text{NO}_2$, $\mathbf{F_2} - \text{O}_2$, $\mathbf{B} - \text{Pb}_3 \text{O}_4$, $\mathbf{\Gamma} - \text{Cl}_2 \mathbf{\mathcal{I}} - \text{PbCl}_2$

Уравнения реакций:

1)
$$3Pb(NO_3)_2 \xrightarrow{t^{\circ}} Pb_3O_4 + 6NO_2 \uparrow + O_2$$

2)
$$Pb_3O_4 + 8HCl \rightarrow 3PbCl_2 + Cl_2\uparrow + 4H_2O$$

II вариант

При термическом разложении 18.0 г соли $\bf A$ при 500 °C выделилась смесь газов $\bf E_1$ и $\bf E_2$ и остался твердый остаток $\bf B$, содержащий 27.64 % кислорода по массе. Вещество $\bf B$ полностью растворилось в концентрированной йодистоводородной кислоте, в результате чего выпал тёмный кристаллический осадок вещества $\bf \Gamma$, и образовался бледно-зелёный раствор соли $\bf \Pi$. Известно, что газ $\bf E_1$ занимает объем 4.89 л при 25 °C и 1 атм.

- 1) Установите состав соли **A** и веществ \mathbf{F}_1 , \mathbf{F}_2 , \mathbf{B} , $\mathbf{\Gamma}$, \mathbf{J} . Ответ подтвердите расчетами.
- 2) Напишите уравнения всех упомянутых реакций.

Решение:

Бурый газ $\bf F$ подходит под описание диоксида азота, из чего можно сделать предположение, что исходная соль $\bf A$ – нитрат металла. Вычислим количество бурого газа $\bf F$:

$$n(\mathbf{F}) = \frac{4,89*101,3}{298*8,31} = 0,2$$
 моль

Количество вещества диоксида азота вдвое больше количества соли. Формула соли будет выглядеть как $X(NO_3)_n$. Варьируя n, получаем возможные значения для молярной массы металла.

• n=1, формула соли XNO₃, M(A) = $\frac{18.0}{0.2}$ = 90 $\Gamma/_{\text{МОЛЬ}}$, отсюда

M(X) = 28 г/моль, и данное значение не подходит ни одному из металлов

• n=2, формула соли $X(NO_3)_2$, $M(\mathbf{A}) = \frac{18,0}{0.1} = 180$ $\Gamma/_{\mathbf{MOЛЬ}}$, отсюда

M(X) = 56 г/моль, и данное значение подходит железу

Проверим наше предположение, посчитав формулу соединения ${f B}$ представляющего оксид железа ${\sf Fe_nO_m}$:

$$n:m = \frac{72,36}{56} : \frac{27,64}{16} = 1,29:1,73 = 0,75:1$$
 или 3:4,

что соответствует железной окалине Fe₃O₄

Вещества: **A** - Fe(NO₃)₂, **Б**₁ - NO₂, **Б**₂ - O₂, **B** - Fe₃O₄, Γ - I₂ Д - FeI₂

Уравнения реакций:

1)
$$3\text{Fe}(\text{NO}_3)_2 \rightarrow \text{Fe}_3\text{O}_4 + 6\text{NO}_2\uparrow + \text{O}_2$$

2)
$$Fe_3O_4 + 8HI \rightarrow 3FeI_2 + I_2\uparrow + 4H_2O$$

Рекомендации к оцениванию:

- 1. Вещества **A Д** по 0,5 балла
- 2. Уравнения реакций по 1 баллу (если реакция неверно уравнена 0,5 баллов)

ИТОГО: 5 баллов

№ 2

І вариант

Простые вещества **A** и **Б**, расположенные в одном периоде системы элементов Д.И. Менделеева, образуют между собой соединение **B**, содержащее 64.00~% элемента **Б**. При гидролизе соединения **B** образуется газ Γ , содержащий по массе 5.88~% водорода и 94.12% элемента **Б**. Водный раствор газа Γ обладает кислотными свойствами.

- 1) Определите элементы **A**, **Б** и формулы соединений **B**, $\hat{\Gamma}$.
- 2) Напишите уравнение реакций получения и гидролиза соединения В.
- 3) Какова масса осадка, который выпадет при пропускании 5.6 л (н.у.) газа Γ через избыток водного раствора нитрата свинца (II)?

Решение.

Общая формула соединения Γ : $H_n E$, где n- модуль степени окисления E. Заметим, что сумма массовых долей водорода и элемента E в соединении E составляет 100%. Получим и решим уравнение:

$$\frac{n}{E+n} = 0.0588,$$

где \mathbf{F} – молярная масса элемента \mathbf{F} . Получим следующее выражение: \mathbf{F} = 16n. Подставляем разные целые значения \mathbf{F} и получаем, что при \mathbf{F} = 32 г/моль, что соответствует сере (S). Тогда \mathbf{F} – сероводород (H₂S). Аналогичным способом установим формулу соединения \mathbf{F} : общая формула – \mathbf{F} – \mathbf{F} составим уравнение:

$$\frac{32n}{2A+32n} = 0.64,$$

где ${\bf A}$ — молярная масса элемента ${\bf A}$, откуда ${\bf A}$ = 9n. При ${\bf n}$ = 3 ${\bf A}$ = 27 г/моль, что соответствует алюминию (Al). Таким образом, ${\bf A}$ — Al, ${\bf F}$ — S, ${\bf B}$ — Al₂S₃, ${\bf \Gamma}$ — H₂S.

Уравнение реакции гидролиза В:

$$Al_2S_3 + 6H_2O \rightarrow 2Al(OH)_3\downarrow + 3H_2S\uparrow$$

Способ получения вещества В (принимаются любые адекватные варианты):

$$2A1 + 3S = Al_2S_3$$

Реакция с нитратом свинца:

$$Pb(NO_3)_2 + H_2S = PbS \downarrow + 2HNO_3$$

Для начала рассчитаем количество сероводорода:

$$n(H_2S) = 5.6 \text{ л/22,4 л/моль} = 0.25 \text{ моль}.$$

Тогда n(PbS) = 0.25 моль. m(PbS) = 0.25 моль * 239 г/моль = 59,75 г.

II вариант

Простые вещества **A** и **Б**, расположенные в одном периоде системы элементов Д.И. Менделеева, образуют между собой соединение **B**, содержащее 62.865 % элемента **Б**. При гидролизе этого соединения образуется газ Γ , содержащий по массе 2.47 % водорода и 97.53 % **Б**. Водный раствор газа Γ обладает кислотными свойствами.

- 1) Определите элементы **A**, **Б**, формулы соединений **B**, **Г**.
- 2) Напишите уравнение реакции гидролиза ${\bf B}$ и реакцию получения соединения ${\bf B}$.
- 3) Какова масса осадка, который выпадает при пропускании 11.2 литров (н.у.) газа Γ через избыток водного раствора нитрата свинца (II)?

Решение.

Общая формула соединения Γ : $H_n E$, где n- модуль степени окисления E. Заметим, что сумма массовых долей водорода и элемента E в соединении E составляет 100%. Получим и решим уравнение:

$$\frac{n}{E+n} = 0.0247$$

где ${\bf F}$ — молярная масса элемента ${\bf F}$. Получим следующее выражение: ${\bf F}$ = 39,5n. Подставляем разные целые значения n и получаем, что при n = 2 ${\bf F}$ = 79 г/моль, что соответствует селену (Se). Тогда ${\bf \Gamma}$ — селеноводород (H₂Se). Аналогичным способом установим формулу соединения ${\bf B}$: общая формула — ${\bf A}_2{\bf Se}_n$. Составим уравнение:

$$\frac{79n}{2A + 79n} = 0,62865,$$

где A – молярная масса элемента A, откуда A = 23,33n. При n = 3 A = 70 г/моль, что соответствует галлию (Ga). Таким образом, A – Ga, B – Se, B – Ga₂Se₃, Γ – H₂Se.

Уравнение реакции гидролиза В:

$$Ga_2Se_3 + 6H_2O \rightarrow 2Ga(OH)_3 \downarrow + 3H_2Se\uparrow$$

Способ получения вещества В (принимаются любые адекватные варианты):

$$2Ga + 3Se = Ga2Se3$$

Реакция с нитратом свинца:

$$Pb(NO_3)_2 + H_2Se = PbSe \downarrow + 2HNO_3$$

Для начала рассчитаем количество селеноводорода:

$$n(H_2Se) = 11,2 \text{ л/22,4 л/моль} = 0,5 \text{ моль}.$$

Тогда
$$n(PbSe) = 0.5$$
 моль. $m(PbSe) = 0.5$ моль * 286 г/моль = 143 г.

Рекомендации к оцениванию:

1. Вещества **А-Г** по 0,5 балла

2. Уравнение реакций гидролиза B - 1 балл

3. Способ получения ${\bf B} - 0.5$ балла

4. Вычисление массы осадка – 1,5 балла

2 балла

1 балл

0,5 балла

1,5 балла

ИТОГО: 5 баллов

№ 3

І вариант

Однажды химик Вася не выспался и поэтому засыпал на уроке. Все слова, которые он не записал, заменены буквами. Вот, что он увидел у себя в тетради: «Между веществами $\bf A$, $\bf B$ и $\bf C$ можно провести несколько реакций. $\bf A$ реагирует с галогеном $\bf B$: образуется вещество $\bf D$ [ω (галогена в $\bf D$) = 97.26 %] с выраженными кислотными свойствами. Чтобы $\bf A$ присоединилось к непредельному $\bf C$ нужен катализатор: получается соединение $\bf E$. Присоединение $\bf B$ к $\bf C$ протекает без катализатора, образуется $\bf F$ (масса молекулы $\bf F$ больше массы молекулы $\bf C$ в 2.69 раза). Дома напишите три реакции с необходимыми условиями: горения железа в $\bf B$; между $\bf B$ и $\bf E$; между $\bf C$ и $\bf D$ ». Среди веществ $\bf A$ — $\bf F$ есть два простых и три бинарных вещества, а соединение $\bf F$ не является бинарным. При этом массовая доля одного из элементов в $\bf E$ равна $\bf 81.82$ %.

- 1) Расшифруйте все вещества и помогите Васе выполнить домашнее задание. Свои выводы подтвердите.
- 2) Приведите пример катализатора для присоединения А к С.

Решение.

 ${f D}$ имеет в своем составе галоген, оно также обладает кислотными свойствами. Так как массовая доля галогена в ${f D}$ большая, то, вероятно, это галогеноводород. Попробуем найти состав вещества ${f D}$ перебором:

Галоген	F	Cl	Br	Ι	At
Молярная масса D	19.53	36.5	82.25	130.58	215.9
Соединение D	-	HCl	-	-	-

Значит, D – это HCl, а оно получается взаимодействием водорода с хлором. Значит, B – это хлор, а A – водород.

В условии сказано, что «среди веществ **A**–**F** есть два простых и три бинарных вещества». **F** – не бинарное (и не простое, судя по методу его получения). Это значит, что \mathbf{C} и \mathbf{E} – бинарные вещества, а в \mathbf{F} содержится минимум 3 элемента.

Присоединение хлора к C увеличивает молярную массу соединения в 2.69 раза. Пусть M(C) = y г/моль, тогда составим уравнение: $(y + 35.5 \times 2 \times n)/y = 2.69$, где n – количество молекул хлора, которое присоединилось; откуда M(C) = y = 42n. Поскольку протекает реакция присоединения, логично предположить, что C – непредельное вещество. Молярная масса C удовлетворяет ряду со степенью непредельности 1: C_mH_{2m} . Значит n = 1, так как вещество со степенью непредельности один может присоединить только одну молекулу галогена, значит C – это

пропен (C_3H_6). Циклопропан не является непредельным веществом, поэтому он не подходит под условие. Тогда **F** – это 1,2-дихлорпропан. Все сделанные выводы подтверждаются массовой долей углерода в пропане (**E**), она совпадает с таковой в условии. Катализаторами гидрирования алкенов могут быть металлы (Pt, Pd, Ni). Тогда напишем уравнения всех реакций:

реакции из условия:

$$H_2 + Cl_2 \longrightarrow 2HCl$$
 $A \quad B \quad D$
 $H_2 + Cl_2 \longrightarrow 2HCl$
 $A \quad B \quad D$
 $E \quad Cl_2 + Cl_2 \longrightarrow E$
 $E \quad Cl_2 + Cl_3 \longrightarrow E$
 $E \quad Cl_3 \longrightarrow E$
 $E \quad Cl_4 \longrightarrow E$
 $E \quad Cl_5 \longrightarrow E$
 $E \quad Cl_6 \longrightarrow E$
 $E \quad Cl_7 \longrightarrow E$
 $E \quad Cl_8 \longrightarrow E$
 $E \quad Cl_9 \longrightarrow$

II вариант

Однажды химик Вася не выспался и поэтому засыпал на уроке. Все слова, которые он не записал, заменены буквами. Вот, что он увидел у себя в тетради: «Между веществами $\bf A$, $\bf B$ и $\bf C$ можно провести несколько реакций. $\bf A$ реагирует с галогеном $\bf B$: образуется вещество $\bf D$ [ω (галогена в $\bf D$) = 98.77 %] с выраженными кислотными свойствами. Чтобы $\bf A$ присоединилось к непредельному $\bf C$ нужен катализатор: получается соединение $\bf E$. Присоединение $\bf B$ к $\bf C$ протекает без катализатора, образуется $\bf F$ (масса молекулы $\bf F$ больше массы молекулы $\bf C$ в 4.81 раз). Дома напишите реакции с необходимыми условиями: горения алюминия в $\bf B$; между $\bf B$ и $\bf E$; между $\bf C$ и $\bf D$ ». Среди веществ $\bf A$ — $\bf F$ есть два простых и три бинарных вещества, а соединение $\bf F$ не является бинарным. При этом массовая доля одного из элементов в $\bf E$ равна 81.82 %.

- 1) Расшифруйте все вещества и помогите Васе выполнить домашнее задание. Свои выводы подтвердите.
- 2) Приведите пример катализатора для присоединения А к С.
- 3)

Решение.

D имеет в своем составе галоген, оно также обладает кислотными свойствами. Так как массовая доля галогена в **D** большая, то, вероятно, это галогеноводород. Попробуем найти состав вещества **D** перебором:

Галоген	F	Cl	Br	Ι	At
Молярная масса D	19.23	35.94	81	128.58	212.62
Соединение D			HBr		
Соединение D	_	_	IIDI	-	-

Значит, D – это HBr, а оно получается взаимодействием водорода с бромом. Значит, B – это бром, а A – водород.

В условии сказано, что «среди веществ A–F есть два простых и три бинарных вещества». F – не бинарное (и не простое, судя по методу его получения). Это значит, что C и E – бинарные вещества, а в F содержится минимум 3 элемента.

Присоединение брома к \mathbf{C} увеличивает молярную массу соединения в 4.81 раза. Пусть $\mathbf{M}(\mathbf{C})=\mathbf{y}$ г/моль, тогда составим уравнение: $(\mathbf{y}+80\times2\times\mathbf{n})/\mathbf{y}=4.81$, где $\mathbf{n}-$ количество молекул брома, которое присоединилось; откуда $\mathbf{M}(\mathbf{C})=\mathbf{y}=42\mathbf{n}$. Поскольку протекает реакция присоединения, логично предположить, что $\mathbf{C}-$ непредельное вещество. Молярная масса \mathbf{C} удовлетворяет ряду со степенью непредельности 1: $\mathbf{C}_{m}\mathbf{H}_{2m}$. Значит $\mathbf{n}=1$, так как вещество со степенью непредельности один может присоединить только одну молекулу галогена, значит $\mathbf{C}-$ это

пропен (C_3H_6). Циклопропан не является непредельным веществом, поэтому он не подходит под условие. Тогда ${\bf F}$ – это 1,2-дихлорпропан. Все сделанные выводы подтверждаются массовой долей углерода в пропане (${\bf E}$), она совпадает с таковой в условии. Катализаторами гидрирования алкенов могут быть металлы (${\bf Pt}$, ${\bf Pd}$, ${\bf Ni}$). Тогда напишем уравнения всех реакций:

реакции из условия:

$$H_2 + Br_2 \longrightarrow 2HBr$$
 $A \quad B \quad D$
 $H_2 + C \quad Pt \longrightarrow E$
 $Br_2 + C \quad Br$
 $Br_2 + C \quad Br$
 $Br_3 \rightarrow C \quad Br$
 $Br_4 \rightarrow C \quad Br$
 $Br_5 \rightarrow C \quad Br$
 $Br_5 \rightarrow C \quad Br$
 $Br_7 \rightarrow C \quad Br$

Рекомендации к оцениванию:

1. Вещества **А и В** – по 0.25 балла

 $2 \times 0.25 = 0.5$ балла

2. **С-F** – по 0.5 балла

 $4 \times 0.5 = 2$ балла

3. Реакции из «домашнего задания» — по 0.5 балла Если в реакции галогенирования или присоединения галогеноводорода в качестве продукта нарисован 1-галогенпропан, то за реакцию ставится 0.25 балла $3 \times 0.5 = 1.5$ балла

4. Расчет состава двух из трех веществ **D**, **C** и **E** – по 0.25 балла

 $2 \times 0.25 = 0.5$ балла

5. Пример катализатора

0.5 балла

ИТОГО: 5 баллов

№ 4

I вариант

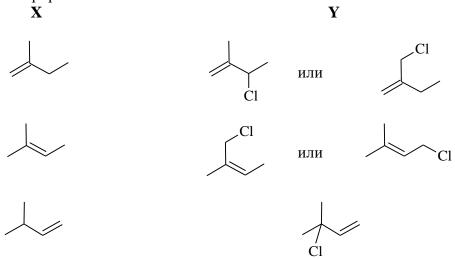
Органическое соединение \mathbf{Y} , содержащее 57.42 % углерода по массе, а также один атом хлора, может быть получено в качестве одного из продуктов при хлорировании в определенных условиях алкена \mathbf{X} нелинейного строения. Соединение \mathbf{Y} существует в виде пары геометрических изомеров.

- 1) Определите молекулярную формулу соединения **У**. Ответ подтвердите расчетом.
- 2) Изобразите структурные формулы соединений ${\bf X}$ и ${\bf Y}$. Укажите условия реакции хлорирования вещества ${\bf X}$ для получения вещества ${\bf Y}$.
- 3) Какое число $\mathrm{sp^3}$ -гибридных орбиталей имеет одна молекула соединения **X**? Ваш ответ обоснуйте.

Решение:

1) Пусть молекулярная формула $Y - C_x H_y Cl$, тогда массовая доля углерода в нем:

$$\omega(C) = \frac{12x}{12x + y + 35.5} = 0.5742$$


Решая это уравнение относительно у, получим:

$$y = 8.9x - 35.5$$

При $x \le 4$, $y \le 0$, что противоречит химическому смыслу.

При x = 5, y = 9, что соответствует молекулярной формуле $Y - C_5H_9Cl$. По составу данное соединение соответствует алкену $X - C_5H_{10}$. Значит речь идет о реакции радикального замещения в алкенах.

2) Рассмотрим возможные структурные формулы нелинейных алкенов и продуктов их радикального хлорирования:

Продукт хлорирования, существующий в виде пары геометрических изомеров только один – образуется во втором случае. Таким образом:

Условия реакции: высокая температура (порядка 400-500 °C) или ультрафиолетовый свет.

4) Атом углерода с одинарными связями содержит 4 sp³-гибридных орбиталей, при двойной связи – 3 sp²-гибридных орбитали (т.к. одна p-орбиталь идет на образование π -связи). Т.е. 1 молекула соединения **X** содержит $3\cdot 4 = 12$ sp³-гибридных орбиталей.

5)

II вариант

Органическое соединение \mathbf{Y} , содержащее 8.61 % водорода по массе, а также один атом хлора, может быть получено в качестве одного из продуктов при хлорировании в определенных условиях алкена \mathbf{X} нелинейного строения. Соединение \mathbf{Y} существует в виде пары геометрических изомеров.

- 1) Определите молекулярную формулу соединения **У**. Ответ подтвердите расчетом.
- 2) Изобразите структурные формулы соединений ${\bf X}$ и ${\bf Y}$. Укажите условия реакции хлорирования вещества ${\bf X}$ для получения вещества ${\bf Y}$.
- 3) Какое число $\mathrm{sp^3}$ -гибридных орбиталей имеет одна молекула соединения **X**? Ваш ответ обоснуйте.

Решение:

1) Пусть молекулярная формула $\mathbf{Y} - C_x H_y C l$, тогда массовая доля углерода в нем:

$$\omega(C) = \frac{y}{12x + y + 35.5} = 0.0861$$

Решая это уравнение относительно у, получим:

$$y = 1.13x + 3.34$$

По химическому смыслу в натуральных числах уравнение имеет решение при x=5, y=9, что соответствует молекулярной формуле $\mathbf{Y}-\mathbf{C_5H_9Cl}$. По составу данное соединение соответствует алкену $\mathbf{X}-\mathbf{C_5H_{10}}$. Значит, речь идет о реакции радикального замещения в алкенах.

2) Рассмотрим возможные структурные формулы нелинейных алкенов и продуктов их радикального хлорирования:

Продукт хлорирования, существующий в виде пары геометрических изомеров только один – образуется во втором случае. Таким образом:

Условия реакции: высокая температура (порядка 400-500 °C) или ультрафиолетовый свет.

3) Атом углерода с одинарными связями содержит 4 sp³-гибридных орбиталей, при двойной связи -3 sp²-гибридных орбитали (т.к. одна p-орбиталь идет на образование π -связи). Т.е. 1 молекула соединения \mathbf{X} содержит $3 \cdot 4 = \mathbf{12}$ sp³-гибридных орбиталей.

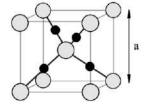
Рекомендации к оцениванию:

- 1. Молекулярная формула X 1 балл
 2 балла

 Обоснование (расчет) 1 балл
 2 балла
- **2.** Структурные формулы **X** и **Y** по 0.75 балла 2 балла
- Условие реакции 0.5 балла

 3. Число ${\rm sp}^3$ -гибридных орбиталей 0.5 балла
 Обоснование 0.5 балл

ИТОГО: 5 баллов


№ 5

І вариант

На рисунке справа изображена элементарная ячейка объемно-центрированной кубической кристаллической решетки вещества ${\bf X}$. Параметр элементарной ячейки а выражается формулой:

$$a = \sqrt[3]{\frac{N \cdot M}{N_A \cdot \rho}}$$

где N – число формульных единиц в составе ячейки, ρ – плотность вещества.

- 1) Определите вещество **X**, если его плотность равна 7.14 г/см^3 , а параметр элементарной ячейки -4.7615 Å ($1 \text{ Å} = 10^{-8} \text{ см}$). Ответ подтвердите расчетом.
- 2) Напишите уравнения химических реакций вещества Х с уксусной кислотой и раствором аммиака.

Для справки:

- 1) Атомы металла изображены черным цветом и полностью находятся внутри ячейки;
- 2) Формульная единица группа атомов, соответствующая формуле вещества;
- 3) Атомы могут относиться как к одной, так и к нескольким соседним элементарным ячейкам кристалла. В этом случае при определении состава элементарной ячейки учитывают соответствующие доли атомов.

Решение:

1) Для определения вещества **X** необходимо вычислить его молярную массу:

$$M(\mathbf{X}) = \frac{a^3 \cdot N_A \cdot \rho}{N}$$

С учетом расположения атомов в элементарной ячейке:

число атомов черного цвета – 4

число атомов белого цвета – $1 + \frac{1}{8} \cdot 8 = 2$

Мольное соотношение атомов 4:2=2:1

Стехиометрический состав **X**: A_2B , т.е. число формульных единиц $N(A_2B) = 2$.

$$\mathbf{M}(\mathbf{X}) = \frac{a^3 \cdot N_A \cdot \rho}{N} = \frac{(4.7615 \cdot 10^{-8})^3 \cdot 6.02 \cdot 10^{23} \cdot 7.14}{2} = \mathbf{232} \text{ г/моль}$$

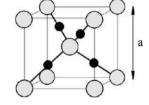
Стехиометрический состав X указывает на то, что степень окисления металла в нем равна +1. Рассмотрев бинарные соединения такого состава металлов I группы, можно рассчитать молярную массу B:

<u>' ' '</u>			,	1 1 1		
X	$\text{Li}_2\mathbf{B}$	$Na_2\mathbf{B}$	K_2 B	Cu_2 B	Rb_2 B	$Ag_2\mathbf{B}$
$M(\mathbf{B})$	218	186	154	104	62	16

Единственный рациональный вариант получается в случае серебра: на остаток приходится 16, что соответствует массе кислорода. Таким образом, $\mathbf{X} - \mathbf{Ag_2O}$, оксид серебра (I).

2) Уравнения реакций:

 $Ag_2O + 2CH_3COOH \rightarrow 2CH_3COOAg + H_2O$


 $Ag_2O + 4NH_3 + H_2O \rightarrow 2[Ag(NH_3)_2]OH$ или $Ag_2O + 4NH_3 \cdot H_2O \rightarrow 2[Ag(NH_3)_2]OH + 3H_2O$

II вариант

На рисунке справа изображена элементарная ячейка объемно-центрированной кубической кристаллической решетки вещества ${\bf X}$. Параметр элементарной ячейки а выражается формулой:

$$a = \sqrt[3]{\frac{N \cdot M}{N_A \cdot \rho}}$$

где N — число формульных единиц в составе ячейки, ρ — плотность вещества.

- 1) Определите вещество **X**, если его плотность равна 6.15 г/см^3 , а параметр элементарной ячейки -4.2685 Å (1 Å = 10^{-8} см). Ответ подтвердите расчетом.
- 2) Напишите уравнения химических реакций вещества **X** с соляной кислотой и раствором аммиака.

Для справки:

- 1) Атомы металла изображены черным цветом и полностью находятся внутри ячейки;
- 2) Формульная единица группа атомов, соответствующая формуле вещества;
- 3) Атомы могут относиться как к одной, так и к нескольким соседним элементарным ячейкам кристалла.
- В этом случае при определении состава элементарной ячейки учитывают соответствующие доли атомов.

Решение:

1) Для определения вещества **X** необходимо вычислить его молярную массу:

$$M(\mathbf{X}) = \frac{a^3 \cdot N_A \cdot \rho}{N}$$

С учетом расположения атомов в элементарной ячейке:

число атомов черного цвета – 4

число атомов белого цвета $-1 + \frac{1}{8} \cdot 8 = 2$

Мольное соотношение атомов 4:2=2:1

Стехиометрический состав **X**: A_2B , т.е. число формульных единиц $N(A_2B) = 2$.

$$\mathbf{M}(\mathbf{X}) = \frac{a^3 \cdot N_A \cdot \rho}{N} = \frac{(4,2685 \cdot 10^{-8})^3 \cdot 6,02 \cdot 10^{23} \cdot 6,15}{2} = \mathbf{144} \text{ г/моль}$$

Стехиометрический состав X указывает на то, что степень окисления металла в нем равна +1. Рассмотрев бинарные соединения такого состава металлов I группы, можно рассчитать молярную массу B:

X	Li ₂ B	Na_2 B	K_2 B	Cu_2 B
$M(\mathbf{B})$	130	98	66	16

Единственный рациональный вариант получается в случае меди: на остаток приходится 16, что соответствует массе кислорода. Таким образом, $\mathbf{X} - \mathbf{Cu}_2\mathbf{O}$, оксид меди (I).

2) Уравнения реакций:

 $Cu_2O + 2HCl \rightarrow 2CuCl + H_2O$

 $Cu_2O + 4NH_3 + H_2O \rightarrow 2[Cu(NH_3)_2]OH$ или $Cu_2O + 4NH_3 \cdot H_2O \rightarrow 2[Cu(NH_3)_2]OH + 3H_2O$

Рекомендации к оцениванию:

1. Определено число формульных единиц (молекул) и стехиометрический состав – по 0.5 *3 балла* балла

Вычислено значение молярной массы вещества $\mathbf{X}-1$ балл

Формула вещества ${\bf X} - 1$ балл

2. Уравнения реакций по 1 баллу

2 балла

итого:

5 баллов

Практический тур І вариант

Решение.

Чёрное вещество, растворяющееся в соляной кислоте при нагревании с образованием голубого раствора — оксид меди (II). На это указывает и выпадение голубого студенистого осадка ($Cu(OH)_2$), разлагающегося при нагревании до соответствующего оксида и растворимого в избытке гидроксида аммиака ([$Cu(NH_3)_4(OH)_2$]. Жёлтый осадок, выпавший при добавлении раствора нитрата бария — это хромат бария $BaCrO_4$, а жёлтые кристаллы в исходной смеси, соответственно, хромат калия K_2CrO_4 . Оставшийся в растворе третий компонент исходной смеси, реагирующий с ляписом с выпадением белого творожистого осадка (AgCl) не что иное, как хлорид калия. Катион калия в хлориде и хромате может быть установлен по фиолетовой окраске пламени.

Вещества в исходной смеси: CuO, KCl, K2CrO4

Уравнения реакций:

- 1. $CuO + 2HCl = CuCl_2 + H2O$
- 2. $CuCl_2 + 2KOH = Cu(OH)_2 + KCl$
- 3. $Cu(OH)_2 + 4NH_3*H_2O = [Cu(NH_3)_4(OH)_2]$
- 4. $Cu(OH)2 = CuO + H_2O$
- 5. $K_2CrO_4 + Ba(NO_3)_2 = BaCrO_4 + KNO_3$
- 6. $AgNO_3 + KCl = AgCl + KNO_3$

II вариант

Решение.

Очевидно, что раствор, оставшийся после фильтрование чёрных и зелёных частиц, содержит катионы калия, так как окрашивает пламя горелки в фиолетовый цвет. Определить противоион можно с помощью реакции этой калиевой соли с сульфатом меди: выпадающая смесь осадков серого цвета не что иное, как иодид меди (I) и молекулярный иод, наличие которого подтверждается и соответствующим запахом. Таким образом, одно из веществ исходной смеси – иодид калия. Нерастворимость в воде зелёных частиц может натолкнуть на мысль, что это оксид хрома (III), тогда как для частиц чёрного цвета вариантов существенно больше. Образование зеленовато-голубого раствора при растворении смеси этих частиц в соляной кислоте при нагревании говорит о том, что в растворе, скорее всего, содержится смесь катионов Cr³+ и Cu²+, при добавлении к которым щелочи образовалась смесь осадков, один из которых растворился в избытке щелочи с образованием зелёного раствора, значит, частицы зелёного цвета — это окись хрома

(III). Оставшийся после добавления избытка щелочи осадок синего цвета растворяется в аммиаке с образованием тёмно-синего раствор — тогда этот осадок не что иное, как гидроксид меди (II), а исходные чёрные частицы — окись меди (II).

Вещества в исходной смеси: CuO, Cr₂O₃, KI

Уравнения реакций:

- 1. $2Cu(NO_3)_2 + 4KI = 2CuI + I_2 + 4KNO_3$
- 2. $Cr_2O_3 + 6HCI = 2CrCI_3 + 3H_2O$
- 3. $CuO + 2HCI = CuCl_2 + H_2O$
- 4. $CrCl_3 + 6NaOH = Na_3[Cr(OH)_6] + NaCl$
- 5. $CuCl_2 + 2NaOH = Cu(OH)_2 + NaCl$
- 6. $Cu(OH)_2 + 4NH_3 = [Cu(NH_3)_4](OH)_2$

Рекомендации к оцениванию:

- 1. Написаны уравнения проведённых реакций
- 2. Расшифрованы вещества в исходной смеси

0.5×6=3 балла

1×3=3 балла