Задание 10-1. Для обеззараживания и умягчения воды использовали пятиминутное кипячение, в результате которого общая жесткость её снизилась с 5,5 до 3,5 °Ж (ммоль/л). Какая масса накипи образуется в чайнике в течение трех месяцев, если ежедневно подобным образом в нем кипятят 3 л воды? Количественное содержанием соединений ионов жесткости в воде равное. (20 баллов)

Решение:

- 1. Снижение жесткости на 2,0 ммоль/л показывает, что в растворе была концентрация $C[1/2Mg(HCO_3)_2] + [1/2Ca(HCO_3)_2] = 2,0$ ммоль/л, значит суммарное содержание солей в 1 л воды было $=2,0\times1=2,0$ ммоль.
- 2. Вычисляем количество молей кальция и магния с учетом фактора эквивалентности, содержание которых по условию равное
- ν Mg(HCO₃)₂ = ν Ca(HCO₃)₂=2,0/(2×2)=0,5 ммоль
- 3. По уравнению реакции

Ca(HCO₃)₂=CaCO₃+H₂O+CO₂ столько же образовалось CaCO₃

 $m(CaCO_3) = \nu \times M(CaCO_3) = 0.5 \times 10^{-3} \text{ (моль)} \times 100 \times 10^3 \text{ (мг/моль)} = 50.0 \text{ мг}$

4. По уравнению реакции

 $Mg(HCO_3)_2 = MgCO_3 + H_2O + CO_2$ столько же образовалось $MgCO_3$ $m(MgCO_3) = v \times M(MgCO_3) = 0.5 \times 10^{-3} \text{ (моль}) \times 84.3 \times 10^3 \text{ (мг/моль}) = 42.3 \text{ мг}$

- 5. Таким образом, при кипячении 1 л воды образуется накипи $m(CaCO_3)+m(MgCO_3)=50,0+42,3=92,3$ мг.
- 6. При кипячении ежедневно по 3 литра в течение 3-х месяцев выделиться m(CaCO₃)+ m(MgCO₃)=92,3(мг/л)× 3 л× 90 дней= 24921 мг \approx 25 г.

Система оценивания:

1	Определение суммы концентраций Mg(HCO ₃) ₂ + Ca(HCO ₃) ₂ в 1 л	4
	раствора	
2	Определение количества солей, выведенных из раствора	4
3	Написание уравнения и вычисление массы образовавшегося СаСО3	4
4	Написание уравнения и вычисление массы образовавшегося MgCO ₃	4
5	Определение массы накипи при кипячении 1 л воды	2
6	Определение массы накипи при кипячении воды в течение 3	2
	месяцев	
Итого		20 баллов

Задание 10-2. При сжигании одного моля углеводорода было собрано 318 литров газовой смеси при 150 °C и давлении 132 695 Па. Найдите и напишите брутто- и структурную формулу углеводорода, если известно, что при окислении раствором перманганата калия образуется симметричный двухатомный спирт. (20 баллов)

Решение:

1. Воспользуемся газовым законом и определим объем выделившегося газа при нормальных условиях (T_o =273 K и P_o =101325 Па). (P_o V_o)/ T_o =(P_1 V_1)/ T_1

 $V_o = (P_1 \times V_1 \times T_o)/(T_1 \times P_o) = (132695 \ \Pi a \times 318 \ \pi \times 273 \ K)/(423 \ K \times 101315 \ \Pi a) = 268,8 \ \pi$

- 2. Количества выделившегося газа при нормальных условиях 268,8 (л)/22,4 (моль/л) = 12 моль.
- 3. Общее выражение для реакции горения углеводородов имеет вид: $C_xH_v+(X+\frac{1}{2}Y)$ $O_2=X$ $CO_2+\frac{1}{2}Y$ H_2O

Таким образом, $X+\frac{1}{2}1/2Y = 12$ моль

Для предельных углеводородов C_xH_{2x},

Следовательно, 2X = Y = 12

- 4. Брутто- формула C_6H_{12}
- 5. По условию при окислении углеводорода раствором перманганата калия образуется симметричный двухатомный спирт

$$3CH_3$$
— CH_2 — CH_2 — CH_3 + $2KMnO_4$ -+ $4H_2O$ \rightarrow $3CH_3$ — CH — $CH(OH)$ — $CH(OH)$ — CH_2 — CH_3 + $2KOH$ + $2MnO_2$

6. Структурная формула

CH₃—CH—CH=CH—CH₂—CH₃

Система оценивания:

1	Определение объема выделившегося газа при нормальных	5
	условиях	
2	Определение количества выделившегося газа при нормальных	2
	условиях	
3	Общее выражение для реакции горения углеводородов	3
4	Брутто- формула	3
5	Реакция окислении углеводорода раствором перманганата калия	5
6	Структурная формула	2
Итого		20 баллов

Задание 10-3. Аммиак и хлороводород общим объёмом 15,68 л (н.у.) и относительной плотностью по водороду 14,07 прореагировали между собой. Какая масса соли образуется при этом? Какой газ останется в избытке? Определите его массу. Оставшийся газ поглощён 0,5 л воды. Рассчитать массовую долю вещества в полученном растворе и его молярную концентрацию, если плотность полученного раствора считать равной плотности воды. (20 баллов)

Решение:

- 1. Записываем уравнение реакции. $HC1 + NH_3 = NH_4C1$ Эта задача на «избыток» и «недостаток».
- 2. Рассчитываем сумму количеств вещества хлороводорода и аммиака $15,68~\pi:22,4~\pi/\text{моль}=0,70~\text{моль}$ Обозначим $\nu(\text{HCl})$ количество хлороводорода и $\nu(\text{NH}_3)$ количество аммиака. Тогда $\nu(\text{HCl})$ + $\nu(\text{NH}_3)$ = 0,7~моль
- 3. Расчет количеств хлороводорода и аммиака в смеси: Обозначим γ₁ мольная доля хлороводорода и γ₂ мольная доля аммиака.

Средняя молярная масса смеси газов - рассчитывается на основе молярных масс составляющих эту смесь газов и их объемных долей или мольных долей.

Относительная плотность смеси газа по водороду – это отношение средней молярной массы искомого вещества к молярной массе водорода:

$$D(H_2) = (\chi_1 \times M(HC1) + \chi_2 \times M(NH_3))/2$$

$$2 \times 14,07 = (v(HC1) \times 36,5 + (1 - v(HC1)) \times 17)/0,7$$

Находим:

$$v(HCl) = 0,4$$
 моль $v(NH_3) = 0,7 - 0,4 = 0,3$ моль.

Хлороводород находится в избытке, поэтому расчет ведем по недостатку, т.е. по аммиаку.

4. Из уравнения реакции следует, что $\nu(NH_3) = \nu(NH_4Cl) = 0,3$ моль. Определяем массу хлорида аммония. $m(NH_4Cl) = \nu(NH_4Cl) \times M(NH_4Cl) = 0,3 \times 53,5 = 16,05 \; \Gamma.$

5. Определили, что хлороводород находится в избытке (по количеству вещества избыток составляет 0,1 моль).

Рассчитаем массу избытка хлороводорода. $m(HCl) = v(HCl) \times M(HCl) = 0,1 \times 35,5 = 3,55 \ \Gamma$

6. Расчет массовой доли вещества (HCl) в полученном растворе

$$\omega(HC1)$$
= 3,55 /(3,55 +500) = 0,00705 или \approx 0,7 %

7. Расчет молярной концентрации $c(HCl)=3,55 \text{ г/}(36,5\text{г/моль}\times0,5\pi)=0,486 \text{ моль/л}.$

Система оценивания:

1	Написание уравнения реакции	1
2	Определение суммы количеств вещества	2
3	Расчет количеств хлороводорода и аммиака в смеси	5
4	Определение массы хлорида аммония	4
5	Определение массы избытка хлороводорода	4
6	Расчет массовой доли	2
7	Расчет молярной концентрации	2
Итого		20 баллов

Задание 10-4. В воде объёмом 50 мл растворили медный купорос $CuSO_4 \times 5H_2O$ массой 5,5 г. Определите массовую и мольную долю сульфата меди (II) в полученном растворе. Через полученный раствор пропустили 0,448 л (н.у.) сероводорода. Рассчитать массовую долю кислоты в конечном растворе. (20 баллов)

Решение:

1. Найдем массу $CuSO_4$, содержащегося в $CuSO_4 \times 5H_2O$. Для этого рассчитаем количество вещества $CuSO_4 \times 5H_2O$. $\nu(CuSO_4 \times 5H_2O) = m(CuSO_4 \times 5H_2O) / M(CuSO_4 \times 5H_2O) = 5,5/250 = 0,022$ моль

Из формулы медного купороса следует, что $\nu(\text{CuSO}_4) = \nu(\text{CuSO}_4 \times 5\text{H}_2\text{O}) = 0,022$ моль. 2 Рассчитаем массу CuSO₄: $m(\text{CuSO}_4) = \nu(\text{CuSO}_4) \times M(\text{CuSO}_4) = 0,022 \times 160 = 3,52$ г.

- 3. Учитывая, что масса раствора складывается из массы медного купороса (5,5 г) и массы воды (50 г), рассчитаем массовую долю сульфата меди в растворе. $\omega(\text{CuSO}_4) = \text{m}(\text{CuSO}_4)/\text{m} = 3,52 / (50 + 5,5) = 0,0634 \approx 6,3 \%$.
- 4. Мольная доля медного купороса в полученном растворе $\chi (CuSO_4) = \nu (CuSO_4)/[(\nu (CuSO_4) + \nu (H_2O)]$

Масса воды в навеске медного купороса $m(H_2O) = m(CuSO_4 \times 5H_2O)$ - $m(H_2O) = 5.5 - 3.52 = 1.98$ г. Итого масс воды 50+1.98 = 51.98 г и количество воды $v(H_2O) = 51.98/18 = 2.89$ моль. Мольная доля медного купороса в полученном растворе χ (CuSO₄)= 0.022/(0.022+2.89)=0.0755=7.6%

5. Расчет массовой доли кислоты в конечном растворе

Реакция медного купороса с сероводородом:

$$CuSO_4 + H_2S = CuS + H_2SO_4$$

Количество сероводорода $\nu(H_2O) = 0,448/22,4 = 0,020$ моль Количество медного купороса в растворе:

$$\nu(CuSO_4) = m(CuSO_4)/M(CuSO_4) = 3,52/159,5 = 0,022$$
 моль/л

Сероводород в недостатке, поэтому расчет ведется по нему. Следовательно, образуется в конечном растворе 0,02 моля серной кислоты, при этом 0,02 моля CuS выпадает в осадок.

Массовая доля кислоты в конечном растворе

$$\omega(H_2SO_4) = m(H_2SO_4)/([m(H_2SO_4) + m(H_2O) - m(CuS)] = (0.02 \times 98)/[(0.02 \times 98) + 51.98 - (0.02 \times 95.5) = 0.0377 \approx 3.8 \%.$$

Система оценивания:

1	Расчет количество вещества CuSO ₄ ×5H ₂ O	3
2	Расчет массы CuSO ₄	4
3	Расчет массовой доли сульфата меди в растворе	4
4	Расчет мольной доли медного купороса	4
5	Расчет массовой доли кислоты в конечном растворе	5
Итого		20 баллов

Задание 10-5. По правой (левой) части уравнения с коэффициентами восстановите формулы веществ и коэффициенты в левой (правой) части уравнения реакции.

(20 баллов)

1	$Cu + 2H_2SO_{4конц} \rightarrow$
2	$3Cu + 8HNO_{3pa36} \rightarrow$
3	$\rightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O$
4	$2Fe + 6H_2SO_{4конц} \rightarrow$
5	$Fe + 4HNO_{3pa36} \rightarrow$
6	$\rightarrow Fe(NO_3)_3 + 3NO_2 + 3H_2O$
7	$2H_2SO_{4\kappa ohi} + C \rightarrow$
8	4HNO _{3pa36, γop} + 3
9	\rightarrow 4NO ₂ + CO ₂ +2H ₂ O
	\rightarrow 41002 + CO2 + 2112O
10	2H ₂ SO _{4конц} + S →
_	
10	$2H_2SO_{4конц} + S \rightarrow$
10 11	$2H_2SO_{4KOHU} + S \rightarrow$ $2HNO_{3pa36, rop} + S \rightarrow$
10 11 12	$2H_2SO_{4_{KOHЦ}} + S \rightarrow$ $2HNO_{3pa36, rop} + S \rightarrow$ $\rightarrow 6NO_2 + H_2SO_4 + 2H_2O$
10 11 12 13	$2H_2SO_{4_{KOHI}} + S \rightarrow$ $2HNO_{3pa36, rop} + S \rightarrow$ $\rightarrow 6NO_2 + H_2SO_4 + 2H_2O$ $2H_2SO_{4pa36} + S \rightarrow$

17	$5HNO_{3конц, rop} + P \longrightarrow$
18	$Cu + 2H_2SO_{4конц} \rightarrow$
19	$4Ca + 10 \text{ HNO}_{3\text{конц}} \rightarrow$
20	$4Ca + 10 \text{ HNO}_{3pa36}. \rightarrow$

Система оценивания:

1	$Cu + 2H_2SO_{4kohij} \rightarrow CuSO_4 + SO_2 + 2H_2O$	1 балл
2	$3Cu + 8HNO_{3pa36} \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$	1 балл
3	$Cu + 4HNO_{3конц} \rightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O$	1 балл
4	2 Fe + 6 H ₂ SO _{4конц} \rightarrow Fe ₂ (SO ₄) ₃ + 3 SO ₂ + 6 H ₂ O	1 балл
5	$Fe + 4HNO_{3pa36} \rightarrow Fe(NO_3)_3 + NO + 2H_2O$	1 балл
6	Fe +6HNO _{3конц} \rightarrow Fe(NO ₃) ₃ + 3NO ₂ +3H ₂ O	1 балл
7	$2H_2SO_{4\kappa OHI} + C \rightarrow 2SO_2 + CO_2 + 2H_2O$	1 балл
8	$4HNO_{3pa36, rop} + 3 C \rightarrow 4NO + 3CO_2 + 2H_2O$	1 балл
9	$4HNO_{3конц, гор} + C \rightarrow 4NO_2 + CO_2 + 2H_2O$	1 балл
10	$2H_2SO_{4конц} + S \rightarrow 3SO_2 + 2H_2O$	1 балл
11	$2\text{HNO}_{3\text{pa36, rop}} + \text{S} \rightarrow 2\text{NO} + \text{H}_2\text{SO}_4$	1 балл
12	$4HNO_{3конц, гор} + S \rightarrow 6NO_2 + H_2SO_4 + 2H_2O$	1 балл
13	$2H_2SO_{4pa36} + S \rightarrow$ реакция не идет	1 балл
14	$HC1+S \rightarrow$ реакция не идет	1 балл
15	$5H_2SO_{4конц} + P \rightarrow 2H_3PO_4 + 5SO_2 + 2H_2O$	1 балл
16	$5\text{HNO}_{3\text{pa36, rop}} + 3\text{P} + 2\text{H}_2\text{O} \rightarrow 3\text{H}_3\text{PO}_4 + 5\text{NO}$	1 балл
17	$5HNO_{3$ конц, гор $+ P \rightarrow H_3PO_4 + 5NO_2 + H_2O$	1 балл
18	$Cu + 2H_2SO_{4KOHII} \rightarrow CuSO_4 + SO_2 + 2H_2O$	1 балл
19	$4Ca + 10 HNO_{3конц}. \rightarrow 4Ca(NO_3)_2 + N_2O + 5 H_2O$	1 балл
20	$4Ca + 10 \text{ HNO}_{3pa36} \rightarrow 4Ca(NO_3)_2 + NH_4NO_3 + 3 \text{ H}_2O$	1 балл
	Итого	20 баллов