Ответы и решения химия 11 кл

Задача 1

По правой части с коэффициентами восстановите формулы веществ и коэффициенты в левой части уравнений реакций:

a)
$$Cr_2O_3 + 3NaNO_3 + 2Na_2CO_3 = 2Na_2CrO_4 + 3NaNO_2 + 2CO_2$$

6)
$$6$$
NaOH+ $3I_2 = 5$ NaI+ NaIO₃+ 3 H₂O

B)
$$2Na_2CrO_4 + 8H_2O + 3Na_2S = 2Na_3[Cr(OH)_6] + 3S + 4NaOH$$

$$\Gamma$$
) Na₂Cr₂O₇+ 14HBr = 2CrBr₃ + 3Br₂ + 7H₂O + 2NaBr

$$_{\rm J}$$
) ${\rm KCr}({\rm SO}_4)_2 + 6{\rm KOH} = {\rm K}_3[{\rm Cr}({\rm OH})_6] + 2{\rm K}_2{\rm SO}_4$

e)
$$3CrF_4 + 10H_2O = 2Cr(OH)_3 + H_2CrO_4 + 12HF$$

ж)
$$2CrCl_2 + 4H_2SO_4$$
(конц.) = $Cr_2(SO4)_3 + SO_2 + 2H_2O + 4HCl$

3)
$$Cr_2S_3 + 12NaOH(конц.) = 2Na_3[Cr(OH)_6] + 3Na_2S$$

и)
$$2Cr(CO)_6 + 3Cl_2 = 2CrCl_3 + 12CO$$

$$\kappa$$
) Na₂Cr₂O₇+ 2NaOH = 2Na₂CrO₄+ H₂O

Критерии оценивания:

Каждое уравнение -1 балл (если верные вещества, но не уравнено -0.5 балла).

Количество баллов -10

Задача 2

При окислении 0,24 моль неизвестного органического вещества X водным раствором перманганата калия образовалось 39,84 г оксалата калия, 55,68 г MnO₂, 8,96 г KOH и вода.

- 1. Какое вещество подверглось окислению?
- 2. Будет ли решение задачи однозначным? Если нет приведите все возможные уравнения окисления.

Решение:

	Содержание верного ответа и указания по оцениванию	Баллы
	(допускаются иные формулировки ответа, не искажающие смысла)	
1	Решение задачи заключается в том, чтобы по коэффициентам в	
	правой части уравнения восстановить левую часть уравнения.	
	• • • • • • • • • • • • • • • • • • • •	

n(K₂C₂O₄) = m (K₂C₂O₄) / M (K₂C₂O₄) = 39,84/166 = 0,24 моль n(MnO₂) = m (MnO₂) / M (MnO₂) = 55,68/87 = 0,64 моль n(KOH) = m (KOH) / M(KOH) = 8,96/56 = 0,16 моль n(KOH) = m (KOH) / M(KOH) = 8,96/56 = 0,16 моль 3 Определена алгебраическая зависимость коэффициентов в уравнении окисления вещества X и составлено уравнение в общем виде: 2 Отношение числа молей равно отношению коэффициентов в реакции n(X): n(K₂C₂O₄): n(MnO₂): n(KOH) = 0,24 : 0,24 : 0,64 : 0,16 = 1,5: 1,5: 4: 1-3.3:8:2 1 Таким образом получаем схему реакции с несколькими известными коэффициентами 3 X + KMnO₄ → 3 K₂C₂O₄ + 8 MnO₂ + 2 KOH + H₂O В правой части иместея по 8 атомов К и Мп, следовательно, неизвестное вещество X содержит 2 атома С и пекоторое количество атомов Н и O. 3 C₂HyO₂ + 8 KMnO₄ → 3 K₂C₂O₄ + 8 MnO₂ + 2 KOH + a H₂O 2 Теперь приравняем количество атомов Н и O в правой и левой части и получим систему уравнений (H): 3 y = 2 + 2 a 2 (О): 3 z + 32 = 12 + 16 + 2 + a или 3 z + 32 = 30 + a 2 Из этой системы выражаем у и а через z и получаем у - 2 z + 2 a = 3 z + 2 2 И таким образом, с формально-алгебраической точки зрепия, условиям задачи удовлетворяют вее уравнения вида 3 C₂H₂ + 2Oz + 8 KMnO₄ → 3 K₂C₂O₄ + 8 MnO₂ + 2 KOH + (3z+2) H₂O 2 4 Методом подбора значений z определены вещества, удовлетворяющие условиям реактин: 2 При z = 0 неизвестным веществом X является ацетилен - C₂H₂. Ацетилен окисляется водным растьором перманганата калия до оксалата калия и у	2	Найдены количества веществ в правой части уравнения:	3
3 Определена алгебранческая зависимость коэффициентов в уравнении окисления вещества X и составлено уравнение в общем виде: 2 Отношение числа молей равно отношению коэффициентов в реакции n(X): n(K₂C₂O₄): n(MnO₂): n(K0H) = 0,24 : 0,24 : 0,64 : 0,16 = 1,5: 1,5: 4: 1= 3:3:8:2		$n(K_2C_2O_4) = m (K_2C_2O_4)/M (K_2C_2O_4) = 39,84/166 = 0,24$ моль	
3 Определена алгебраическая зависимость коэффициентов в уравнении окисления вещества X и составлено уравнение в общем виде: Отношение числа молей равно отношению коэффициентов в реакции n(X): n(K₂C₂O₄): n(MnO₂): n(KOH) = 0,24: 0,24: 0,64: 0,16 = 1,5: 1,5: 4: 1= 3:3:8:2 Таким образом получаем схему реакции с несколькими известными коэффициентами 3 X + KMnO₄ → 3 K₂C₂O₄ + 8 MnO₂ + 2 KOH + H₂O В правой части иместся по 8 атомов К и Мп, следовательно, в левой части перед кМnO₄ должен быть коэффициент 8. Число атомов С в правой части равно 6 и, следовательно, неизвестное вещество X содержит 2 атома С и некоторое количество атомов Н и О. 3 С₂HуO₂ + 8 kMnO₄ → 3 K₂C₂O₄ + 8 MnO₂ + 2 kOH + а H₂O Теперь приравняем количество атомов Н и О в правой и левой части и получим систему уравнений (H): 3 y = 2 + 2 а (О): 3 z + 32 = 12 + 16 + 2 + а или 3 z + 32 = 30 + а Из этой системы выражаем у и а через z и получаем y = 2 z + 2 а = 3 z + 2 И таким образом, с формально-алгебраической точки зрения, условиям задачи удовлетворяют все уравнения вида 3 C₂H₂ + 2Oz + 8 kMnO₄ → 3 K₂C₂O₄ + 8 MnO₂ + 2 kOH + (3z+2) H₂O 4 Методом подбора значений z определены вещества, удовлетворяющие условиям реакции: При z = 0 неизвестным веществом X является ацетилен - C₂H₂. Ацетилен окисляется водным раствором перманганата калия до оксалата калия и		$n(MnO_2) = m \ (MnO_2) / M \ (MnO_2) = 55,68/87 = 0,64 $ моль	
окисления вещества X и составлено уравнение в общем виде: Отношение числа молей равно отношению коэффициентов в реакции $n(X)$: $n(K_2C_2O_4)$: $n(MnO_2)$: $n(KOH) = 0.24 : 0.24 : 0.64 : 0.16 = 1.5 : 1.5 : 4 : 1 = 3 : 3 : 8 : 2 Таким образом получаем схему реакции с несколькими известными коэффициентами 3 \times KMnO_4 \rightarrow 3 \times K_2C_2O_4 + 8 \times MnO_2 + 2 \times KOH + H_2O В правой части имеется по 8 атомов К и Мп, следовательно, в левой части перед КМnO4 должен быть коэффициент 8. Число атомов С в правой части равно 6 и, следовательно, неизвестное вещество X содержит 2 атома С и некоторое количество атомов H и O. 3 \times C_2 + 2 \times KMnO_4 \rightarrow 3 \times C_2 + 2 \times KMnO_2 + 2 \times KOH + a \times H_2O Теперь приравняем количество атомов H и O в правой и левой части и получим систему уравнений (H): 3 \times y = 2 + 2 \times a (O): 3 \times x + 32 = 12 + 16 + 2 + a или 3 \times x + 32 = 30 + a Из этой системы выражаем у и а через z и получаем y = 2 \times x + 2 a = 3 \times x + 2 И таким образом, с формально-алгебраической точки зрепия, условиям задачи удовлетворяют вес уравнения вида 3 \times C_2 + 2 \times C_2 + 2 \times C_3 \times$		n(KOH) = m(KOH) / M(KOH) = 8,96/56 = 0,16 моль	
Отношение числа молей равно отношению коэффициентов в реакции $n(X)$: $n(K_2C_2O_4)$: $n(MnO_2)$: $n(KOH) = 0.24 : 0.24 : 0.64 : 0.16 = 1.5 : 1.5 : 4 : 1 = 3:3 : 8 : 2$ Таким образом получаем ехему реакции с несколькими известными коэффициентами $3 \times K = 0.00 \times 10^{-10} = 0.00 \times $	3	Определена алгебраическая зависимость коэффициентов в уравнении	2
$n(X)$: $n(K_2C_2O_4)$: $n(MnO_2)$: $n(KOH) = 0.24$: 0.24 : 0.64 : $0.16 = 1.5$: 1.5 : 4 : $1 = 3.3$:8:2 Таким образом получаем схему реакции с несколькими известными коэффициентами $3 \ X + KMnO_4 \rightarrow 3 \ K_2C_2O_4 + 8 \ MnO_2 + 2 \ KOH + H_2O$ В правой части имеется по 8 атомов К и Мл, следовательно, в левой части перед $KMnO_4$ должен быть коэффициент 8 . Число атомов C в правой части равно 6 и, следовательно, неизвестное вещество X содержит 2 атома C и некоторое количество атомов H и O . $3 \ C_2HyOz + 8 \ KMnO_4 \rightarrow 3 \ K_2C_2O_4 + 8 \ MnO_2 + 2 \ KOH + a \ H_2O$ Теперь приравняем количество атомов H и O в правой и левой части и получим систему уравнений (H): $3 \ y = 2 + 2 \ a$ (O): $3 \ z + 32 = 12 + 16 + 2 + a$ или $3 \ z + 32 = 30 + a$ Из этой системы выражаем y и a через z и получаем $y = 2 \ z + 2$ $a = 3 \ z + 2$ И таким образом, с формально-алгебраической точки зрения, условиям задачи удовлетворяют все уравнения вида $3 \ C_2H_2 + 2Oz + 8 \ KMnO_4 \rightarrow 3 \ K_2C_2O_4 + 8 \ MnO_2 + 2 \ KOH + (3z+2) \ H_2O$ 4 Методом подбора значений z определены вещества, удовлетворяющие условиям реакции: При $z = 0$ неизвестным веществом X является ацетилен - C_2H_2 . Ацетилен окисляется водным раствором перманганата калия до оксалата калия и		окисления вещества X и составлено уравнение в общем виде:	
3:3:8:2 Таким образом получаем схему реакции с песколькими известными коэффициентами 3 $X + KMnO_4 \rightarrow 3 K_2C_2O_4 + 8 MnO_2 + 2 KOH + H_2O$ В правой части имеется по 8 атомов К и Мп, следовательно, в левой части перед $KMnO_4$ должен быть коэффициент 8. Число атомов С в правой части равно 6 и, следовательно, неизвестное вещество X содержит 2 атома C и некоторое количество атомов H и O . 3 $C_2HyOz + 8 KMnO_4 \rightarrow 3 K_2C_2O_4 + 8 MnO_2 + 2 KOH + a H_2O Теперь приравняем количество атомов H и O в правой и левой части и получим систему уравнений (H): 3 y = 2 + 2 а (O): 3 z + 32 = 12 + 16 + 2 + a или 3 z + 32 = 30 + a Из этой системы выражаем y и а через z и получаем y = 2 z + 2 а = 3 z + 2 И таким образом, с формально-алгебраической точки зрения, условиям задачи удовлетворяют все уравнения вида 3 C_2H_2 + 2Oz + 8 KMnO_4 \rightarrow 3 K_2C_2O_4 + 8 MnO_2 + 2 KOH + (3z+2) H_2O 4 Методом подбора значений z определены вещества, удовлетворяющие условиям реакции: При z = 0 неизвестным веществом X является ацетилен - C_2H_2. Ацетилен окисляется водным раствором перманганата калия до океалата калия и$		Отношение числа молей равно отношению коэффициентов в реакции	
Таким образом получаем схему реакции с несколькими известными коэффициентами 3 $X + KMnO_4 \rightarrow 3 K_2C_2O_4 + 8 MnO_2 + 2 KOH + H_2O$ В правой части имеется по 8 атомов К и Мп, следовательно, в левой части перед $KMnO_4$ должен быть коэффициент 8. Число атомов С в правой части равно 6 и, следовательно, неизвестное вещество X содержит 2 атома C и некоторое количество атомов C и C и некоторое количество атомов C и C		$n(X)$: $n(K_2C_2O_4)$: $n(MnO_2)$: $n(KOH) = 0.24 : 0.24 : 0.64 : 0.16 = 1.5 : 1.5 : 4 : 1 = 0.24 : 0.24 : 0.24 : 0.44 : 0.16 = 1.5 : 1.5 : 4 : 1 = 0.24 : 0.44 :$	
коэффициентами 3 X + KMnO ₄ → 3 K ₂ C ₂ O ₄ + 8 MnO ₂ + 2 KOH + H ₂ O В правой части имеется по 8 атомов К и Мп, следовательно, в левой части перед КМnO ₄ должен быть коэффициент 8. Число атомов С в правой части равно 6 и, следовательно, неизвестное вещество X содержит 2 атома С и некоторое количество атомов Н и О. 3 C ₂ HyOz + 8 KMnO ₄ → 3 K ₂ C ₂ O ₄ + 8 MnO ₂ + 2 KOH + a H ₂ O Теперь приравняем количество атомов Н и О в правой и левой части и получим систему уравнений (Н): 3 y = 2 + 2 a (О): 3 z + 32 = 12 + 16 + 2 + а или 3 z + 32 = 30 + а Из этой системы выражаем у и а через z и получаем y = 2 z + 2 а = 3 z + 2 И таким образом, с формально-алгебраической точки зрения, условиям задачи удовлетворяют все уравнения вида 3 C ₂ H ₂ + 2Oz + 8 KMnO ₄ → 3 K ₂ C ₂ O ₄ + 8 MnO ₂ + 2 KOH + (3z+2) H ₂ O 4 Метолом подбора значений z определены вещества, удовлетворяющие условиям реакции: При z = 0 неизвестным веществом X является ацетилен - C ₂ H ₂ . Ацетилен окисляется водным раствором перманганата калия до оксалата калия и			
В правой части имеется по 8 атомов К и Мп, следовательно, в левой части перед КМпО ₄ должен быть коэффициент 8. Число атомов С в правой части равно 6 и, следовательно, неизвестное вещество X содержит 2 атома С и некоторое количество атомов Н и О. 3 С ₂ НуОz + 8 КМпО ₄ → 3 К ₂ С ₂ О ₄ + 8 МпО ₂ + 2 КОН + а Н ₂ О Теперь приравняем количество атомов Н и О в правой и левой части и получим систему уравнений (H): 3 y = 2 + 2 а (О): 3 z + 32 = 12 + 16 + 2 + а или 3 z + 32 = 30 + а Из этой системы выражаем у и а через z и получаем y = 2 z + 2 а = 3 z + 2 И таким образом, с формально-алгебраической точки зрения, условиям задачи удовлетворяют все уравнения вида 3 С ₂ Н ₂ +2Оz + 8 КМпО ₄ → 3 К ₂ С ₂ О ₄ + 8 МпО ₂ + 2 КОН + (3z+2) Н ₂ О 4 Методом подбора значений z определены вещества, удовлетворяющие условиям реакции: При z = 0 неизвестным веществом X является ацетилен - С ₂ Н ₂ . Ацетилен окисляется водным раствором перманганата калия до оксалата калия и			
перед КМпО ₄ должен быть коэффициент 8. Число атомов С в правой части равно 6 и, следовательно, неизвестное вещество X содержит 2 атома С и некоторое количество атомов Н и О. 3 C_2 НуОz + 8 KМпО ₄ \rightarrow 3 K_2 C ₂ O ₄ + 8 MnO ₂ + 2 KOH + а H ₂ O Теперь приравняем количество атомов Н и О в правой и левой части и получим систему уравнений (H): 3 $y = 2 + 2$ а (O): 3 $z + 32 = 12 + 16 + 2 + a$ или 3 $z + 32 = 30 + a$ Из этой системы выражаем у и а через z и получаем $y = 2$ z + 2 $a = 3$ z + 2 И таким образом, с формально-алгебраической точки зрения, условиям задачи удовлетворяют все уравнения вида 3 C_2 H ₂ +2Oz + 8 KMnO ₄ \rightarrow 3 K_2 C ₂ O ₄ + 8 MnO ₂ + 2 KOH + (3z+2) H ₂ O 4 Методом подбора значений z определены вещества, удовлетворяющие условиям реакции: При z = 0 неизвестным веществом X является ацетилен - C ₂ H ₂ . Ацетилен окисляется водным раствором перманганата калия до оксалата калия и		$3 X + KMnO_4 \rightarrow 3 K_2C_2O_4 + 8 MnO_2 + 2 KOH + H_2O$	
вещество X содержит 2 атома C и некоторое количество атомов H и O. $3 C_2$ HyOz + 8 KMnO $_4 \rightarrow 3 K_2$ C $_2$ O $_4$ + 8 MnO $_2$ + 2 KOH + a H $_2$ O Теперь приравняем количество атомов H и O в правой и левой части и получим систему уравнений (H): $3 y = 2 + 2 a$ (O): $3 z + 32 = 12 + 16 + 2 + a$ или $3 z + 32 = 30 + a$ Из этой системы выражаем у и а через z и получаем $y = 2 z + 2$ $a = 3 z + 2$ И таким образом, с формально-алгебраической точки зрения, условиям задачи удовлетворяют все уравнения вида $3 C_2$ H $_2 + 2$ Oz + 8 KMnO $_4 \rightarrow 3 K_2$ C $_2$ O $_4 + 8$ MnO $_2 + 2$ KOH + ($3z + 2$) H $_2$ O 4 Методом подбора значений z определены вещества, удовлетворяющие условиям реакции: При z = 0 неизвестным веществом X является ацетилен - C_2 H $_2$. Ацетилен окисляется водным раствором перманганата калия до оксалата калия и			2
получим систему уравнений (H): $3 \text{ y} = 2 + 2 \text{ a}$ (O): $3 \text{ z} + 32 = 12 + 16 + 2 + \text{a}$ или $3 \text{ z} + 32 = 30 + \text{a}$ Из этой системы выражаем у и а через z и получаем $y = 2 \text{ z} + 2$ а = $3 \text{ z} + 2$ И таким образом, с формально-алгебраической точки зрения, условиям задачи удовлетворяют все уравнения вида $3 \text{ C}_2\text{H}_2 + 2\text{Oz} + 8 \text{ KMnO}_4 \rightarrow 3 \text{ K}_2\text{C}_2\text{O}_4 + 8 \text{ MnO}_2 + 2 \text{ KOH} + (3z+2) \text{ H}_2\text{O}$ 4 Методом подбора значений z определены вещества, удовлетворяющие условиям реакции: При $z = 0$ неизвестным веществом X является ацетилен - C_2H_2 . Ацетилен окисляется водным раствором перманганата калия до оксалата калия и		вещество Х содержит 2 атома С и некоторое количество атомов Н и О.	
 (H): 3 y = 2 + 2 а (O): 3 z + 32 = 12 + 16 + 2 + а или 3 z + 32 = 30 + а Из этой системы выражаем у и а через z и получаем y = 2 z + 2 и таким образом, с формально-алгебраической точки зрения, условиям задачи удовлетворяют все уравнения вида 3 C₂H₂ +2Oz + 8 KMnO₄ → 3 K₂C₂O₄ + 8 MnO₂ + 2 KOH + (3z+2) H₂O 4 Методом подбора значений z определены вещества, удовлетворяющие условиям реакции: При z = 0 неизвестным веществом X является ацетилен - C₂H₂. Ацетилен окисляется водным раствором перманганата калия до оксалата калия и 			2
Из этой системы выражаем у и а через z и получаем $y = 2 z + 2$ $a = 3 z + 2$ И таким образом, c формально-алгебраической точки зрения, условиям задачи удовлетворяют все уравнения вида $3 C_2H_2 + 2Oz + 8 \text{ KMnO}_4 \rightarrow 3 K_2C_2O_4 + 8 \text{ MnO}_2 + 2 \text{ KOH} + (3z+2) H_2O$ 4 Методом подбора значений z определены вещества, удовлетворяющие условиям реакции: При $z = 0$ неизвестным веществом X является ацетилен - C_2H_2 . Ацетилен окисляется водным раствором перманганата калия до оксалата калия и			
$y = 2 z + 2$ $a = 3 z + 2$ И таким образом, с формально-алгебраической точки зрения, условиям задачи удовлетворяют все уравнения вида $3 C_2H_2 + 2Oz + 8 \text{ KMnO}_4 \rightarrow 3 K_2C_2O_4 + 8 \text{ MnO}_2 + 2 \text{ KOH} + (3z+2) H_2O$ 4 Методом подбора значений z определены вещества, удовлетворяющие условиям реакции: При $z = 0$ неизвестным веществом X является ацетилен - C_2H_2 . Ацетилен окисляется водным раствором перманганата калия до оксалата калия и		(O): $3 z + 32 = 12 + 16 + 2 + a$ или $3 z + 32 = 30 + a$	
$a=3\ z+2$ И таким образом, с формально-алгебраической точки зрения, условиям задачи удовлетворяют все уравнения вида $3\ C_2H_2+2Oz+8\ KMnO_4 \rightarrow 3\ K_2C_2O_4+8\ MnO_2+2\ KOH+(3z+2)\ H_2O$ 4 Методом подбора значений z определены вещества, удовлетворяющие условиям реакции: При $z=0$ неизвестным веществом X является ацетилен - C_2H_2 . Ацетилен окисляется водным раствором перманганата калия до оксалата калия и		Из этой системы выражаем у и а через z и получаем	
 И таким образом, с формально-алгебраической точки зрения, условиям задачи удовлетворяют все уравнения вида 3 C₂H₂+2Oz + 8 KMnO₄ → 3 K₂C₂O₄ + 8 MnO₂ + 2 KOH + (3z+2) H₂O 4 Методом подбора значений z определены вещества, удовлетворяющие условиям реакции: При z = 0 неизвестным веществом X является ацетилен - C₂H₂. Ацетилен окисляется водным раствором перманганата калия до оксалата калия и 		y = 2z + 2	
задачи удовлетворяют все уравнения вида $3 C_2H_2 + 2Oz + 8 \text{ KMnO}_4 \rightarrow 3 K_2C_2O_4 + 8 \text{ MnO}_2 + 2 \text{ KOH} + (3z+2) H_2O$ 4 Методом подбора значений z определены вещества, удовлетворяющие условиям реакции: При $z = 0$ неизвестным веществом X является ацетилен - C_2H_2 . Ацетилен окисляется водным раствором перманганата калия до оксалата калия и		a = 3 z + 2	
$3 C_2H_2 + 2Oz + 8 \text{ KMnO}_4 \rightarrow 3 K_2C_2O_4 + 8 \text{ MnO}_2 + 2 \text{ KOH} + (3z+2) H_2O$ 4 Методом подбора значений z определены вещества, удовлетворяющие условиям реакции: При z = 0 неизвестным веществом X является ацетилен - C_2H_2 . Ацетилен окисляется водным раствором перманганата калия до оксалата калия и			2
условиям реакции:			
При $z=0$ неизвестным веществом X является ацетилен - C_2H_2 . Ацетилен окисляется водным раствором перманганата калия до оксалата калия и	4	Методом подбора значений z определены вещества, удовлетворяющие	
окисляется водным раствором перманганата калия до оксалата калия и		условиям реакции:	
			2
"			
3 CH ≡ CH + 8 KMnO ₄ $\rightarrow 3 \text{KOOC-COOK} + 8 \text{ MnO}_2 + 2 \text{ KOH} + 2 \text{ H}_2\text{O}$			

	При $z=1$ неизвестное вещество X принимает вид C_2H_4O . Этой формуле соответствует уксусный альдегид (этаналь) или этиленоксид (эпоксид	2
	этилена). Однако этаналь при окислении перманганатом калия дает не	
	оксалат калия, а ацетат калия, поэтому не подходит.	
	Окисление этиленоксида:	2
	$3 \stackrel{\text{CH}_2}{\overset{\text{CH}_2}{\circ}} + 8 \text{ KMnO}_4 \rightarrow 3 \text{ KOOC- COOK} + 8 \text{ MnO}_2 + 2 \text{ KOH} + 5 \text{ H}_2\text{O}$	
	При $z=2$ неизвестное вещество X принимает вид $C_2H_6O_2$.	
	В этом случае условиям задачи (и химическим и алгебраическим)	
	удовлетворяет этиленгликоль (этандиол-1,2).	
	CH ₂ -OH	2
	3 $CH_2-OH + 8 \text{ KMnO}_4 \rightarrow 3 \text{ KOOC-COOK} + 8 \text{ MnO}_2 + 2 \text{ KOH} + 8 \text{ H}_2O$	
5	Сделан вывод о невозможности больших значений z:	1
	При более высоких значениях z не существует органических веществ,	
	соответствующих молекулярной формуле. Например, при z=3 неизвестное	
	вещество X имело бы вид $C_2H_8O_3$, чего быть не может.	
	Таким образом, решение задачи не однозначно. Условию задачи могут	
	соответствовать три вещества – ацетилен, этиленоксид и этиленгликоль	

Задача 3

Решение:

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие смысла)	1
1. Для распознавания неподписанных растворов требуется лишь один реактив	2
 водный раствор гидрокарбоната кальция 	
2. Написаны уравнения реакций и указаны признаки прохождения реакций	4
При взаимодействии гидрокарбоната кальция с серной кислотой наблюдается	İ
образование осадка сульфата кальция и выделение углекислого газа	İ
$Ca(HCO3)2 + H2SO4 \rightarrow CaSO4 + 2 CO2 + 2 H2O$	<u> </u>
При взаимодействии гидрокарбоната кальция с соляной кислотой наблюдается	4

только выделение углекислого газа	
$Ca(HCO_3)_2 + 2 HC1 \rightarrow CaCl_2 + 2 CO_2 + 2 H_2O$	
При взаимодействии гидрокарбоната кальция с сульфатом натрия наблюдается	4
образование осадка сульфата кальция	
$Ca(HCO_3)_2 + Na_2SO_4 \rightarrow CaSO_4 + 2 NaHCO_3$	
А при добавлении раствора гидрокарбоната кальция к раствору хлорида	2
натрия видимых изменений не происходит	
Приведена реакция образования гидрокарбоната кальция	2
$CaCO3 + H2O + CO2 \rightarrow Ca(HCO3)2$	
Если бы время позволяло, для лучшего визуального эффекта образования	2
осадка малорастворимой соли CaSO4, можно было бы в пробу добавить	
несколько капель органического растворителя – например, ацетона, а	
выделяющийся углекислый газ пропустить через известковую (или баритовую)	
воду: $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$	
Однако следует учитывать, что при действии избытка углекислого газа	
образовавшийся осадок СаСО3 может раствориться, т.к. произойдет	
образование растворимой в воде кислой соли (см. выше)	
итого	20

Задача 4

Продукты сгорания некоторого ангидрида содержат только углекислый газ и воду. На нейтрализацию водного раствора, образующегося при растворении 2 г. этого вещества в воде, требуется израсходовать 45,46 мл 1М едкого кали. Какое строение имеет этот ангидрид? Предложите способ получения этого вещества из неорганических веществ.

Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие смысла)	Баллы
1.Составлено уравнение реакции:	1
$R\text{-CO-O-CO-R}_1 + 2KOH \rightarrow RCOOK + R_1COOK + H_2O$	
2. Находим молярную массу ангидрида:	2
A)n (KOH) = 1 * 0,4546= 0, 4546 моль	
Б) по уравнению реакции	
$n(R-CO-O-CO-R_1)=2n$ (KOH), следовательно, прореагировало 0,0002273 моль (R-CO-O-CO-R_1)	
M (R-CO-O-CO-R ₁)= $2/0,02273 = 88 \text{ г/моль}$	

3. Состав радикалов R и R ₁	2
$M_R + 72 + M_{R1} = 88 \rightarrow (M_R + M_{R1}) = 16$, то есть $R = H$, $R_1 = CH_3$	
Формула смешанного ангидрида НСО-О-СО-СН ₃	
4. Схема синтеза ангидрида из неорганических веществ: (за каждое правильное уравнение 1 балл)	9
a) $CaC_2 + 2H_2O = Ca(OH)_2 + C_2H_2$	
б) $C_2H_2+H_2O \rightarrow CH_3CHO$ (реакция Кучерова)	
в) 2СH ₃ CHO + $O_2 \rightarrow 2$ CH ₃ COOH (окисление альдегида)	
r) $CH_3COOH + PCI_5 \rightarrow CH_3COCI + HCI + POCI_3$	
д) AI4C3 + 12 H2O = 4AI(OH)3 + 3CH4	
e) $CH_4+O_2 \rightarrow HCHO+H_2O$ (каталитическое окисление)	
ё) 2HCHO+ O ₂ →2 HCOOH (окисление альдегида)	
ж) $HCOOH + NaOH \rightarrow H_2O + HCOONa$	
3) $CH_3COCI + HCOONa \rightarrow H_3CO-O-CO-H + NaCI$	
итого	14

Задача 5

Химическая реакция протекает по уравнению $2A_{(r)}+B_{(r)}=2C_{(r)}$. Как измениться скорость реакции при уменьшении давления в системе в 2 раза и одновременном понижении температуры на $40\ ^{0}$ С Температурный коэффициент скорости реакции равен 2.

Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие смысла)	Баллы
По уравнению $2A_{(r)} + B_{(r)} = 2C_{(r)}$.	5
Находим изменение скорости при изменении давления. Выражение для скорости реакции по закону действующих масс:	
$Vxp = k* C_A{}^2* C_B$ (1) или $Vxp = k* P_A{}^2* P_B$ (1a), где C_A и C_B - молярные концентрации реагирующих веществ, P_A и P_B - парциальные (частичные) давления газов,	
A)так как $P_1/P_2 = 0.5$, $P_{2A} = 0.5$ P_{1A} , $P_{2B} = 0.5$ P_{1B}	
6) $V_1 = k * P_{1A}^2 P_{1B}$, $V_2 = k * P_{2A}^2 P_{2B} = k * (0.5 P_{1A})^2 * (0.5 P_{1B}) = 0.125 k * P_{1A}^2 P_{1B}$	

$V_2 \setminus V_1 = 0.125k * P_{1A} * P_{1B}^2 \setminus k * P_{1A} P_{1B} = 0.125 = 2^{-3}$	
Находим изменение скорости при изменении температуры: по правилу Вант-	2
Γ оффа - $V_2 \setminus V_1 = Y^{(t^2-t^1) \setminus 10} = Y^{\Delta t \setminus 10}$, $V_2 \setminus V_1 = 2^{-40 \setminus 10} = 2^{-4}$	
Общее (полное) изменение скорости:	2
$V_{p,t} = V_p *V_t = 2^{-3} * 2^{-4} = 2^{-7} = 1 \setminus 128$	
Скорость уменьшиться в 128 раз	
ИТОГО	9